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Abstract Chromatin immunoprecipitation followed by sequencing (ChIP–seq) facilitates systematic analysis of chemical 

modifications of histone tails. As the cost of next-generation sequencing continues to drop, genome-wide histone modification 

sequencing becomes a common approach in a variety of research in the epigenetic area. However, challenges of efficient ChIP–seq 

data analysis are now the main hurdle to interpreting the histone modification ChIP-seq data, calling for continued enhancements of 

computational approaches. Here we provide a pragmatic overview of available computational approaches for the study of histone 

modification ChIP-seq data. We present the latest advances of computational methods for systematically detecting and functionally 

characterizing various types of histone modification ChIP-seq data, discuss the software packages currently available for performing 

tasks from short read mapping, peak calling to downstream genomic characterization and genome-wide visualization. We also 

present that the regulatory roles of histone modifications upon gene expression can be inferred by developing algorithms and 

methods specifically for histone modification ChIP-seq data. Such approaches will facilitate the epigenetic regulatory network 

construction and provide explicit biological hypothesis for further experiment testing. We also describe some challenges and 

important directions for histone modification analysis based on ChIP-seq data in the future. We envision that the advances of 

computational approaches will bring about a brighter future for large-scale histone modification studies. 

Keywords Next-generation sequencing; Histone modification; Computational approaches; Peak calling; ChIP sequencing 

Background 
The nucleosome is the basic unit of chromatin, which 
includes two copies of each of core histones (H3, H4, 
H2A and H2B) and 147 bp of DNA wrapped around 
(McGhee and Felsenfeld, 1980). Histones are 
evolutionarily conserved proteins with accessible and 
highly dynamic amino-terminal tails and also bear a 
histone fold domain that mediates histone-histone 
interactions. The N-termini of histone tails are 
extensively modified by up to hundreds of different 
post-translational modifications including methylation, 
acetylation and phosphorylation (Kouzarides, 2007). 
Until now, the biological meanings of most of these 
covalent modifications was not understood though  
 
 
 
 
 

significant progresses in recent years indicate that 
methylation and acetylation play important roles in 
transcriptional regulation. To systematically study the 
genome-wide patterns of various histone modifications, 
chromatin immunoprecipitation (ChIP) is usually used 
to collect DNA fragments isolated from chromatin 
using antibodies for histone modifications of interest 
(Collas, 2010). The isolated DNA fragments are 
followed by hybridization to DNA microarrays or 
sequencing (Gilchrist et al., 2009). 

Understanding the mechanisms of histone modifications 
in development and disease is of great interest (Kurdistani, 
2011; Ikegami et al., 2009; Aoki and Akiyama, 2007). The 
availability of reference genome sequences and next 
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generation sequencing platforms called for approaches 
to effectively explain high-throughput genome-wide 
histone modification data (Pepke et al., 2009; Mardis, 
2007). In this review, we will describe computational 
approaches that can analyze the histone modification 
data produced by next generation sequencing 
platforms in terms of principle and advantages. We 
will also illustrate several studies for computationally 
inferring regulatory roles of histone modifications 
upon gene expression based on algorithms and 
methods specifically for histone modification 
ChIP-seq data. Before we discuss the computational 
approaches, we will firstly illustrate the history of 
ChIP-based technologies. 

1 Next-Generation Sequencing Techniques in 
Analyzing Histone Modifications 
ChIP is a fundamental approach that has been around 
for a while (Collas, 2010; Collas, 2009). In brief, 
DNA is covalently cross-linked to bound proteins. 
Then, the cross-linked DNA is broken into short 
fragments. Antibody for specific histone modification 
of interest is then used to isolate bound DNA. The most 
prominent problem with the approach is that only 
individual sites of interest can be studied each time. 

The problem is partially tackled in ChIP-chip, one of 
the earlier methods to study DNA binding proteins on 
the whole genome. ChIP-chip (Buck and Lieb, 2004; 
Horak and Snyder, 2002) is a technique which 
involves immunoprecipitation of DNA using histone 
modification specific antibody followed by a DNA 
hybridization array (chip). Though similar to 
Chromatin immunoprecipitation followed by high- 
throughput ChIP sequencing (ChIP-seq) in name, its 
mapping precision is lower than ChIP-seq, and the 
dynamic range of quantified expression is significantly 
less than ChIP-seq (Liu et al., 2010). Moreover, all 
hybridization approaches including ChIP-chip mask 
repetitive sequences. Though not efficient for genome- 
wide histone modification studies, ChIP-chip with 
custom arrays for specific genes or loci is still useful 
for studies with many experimental conditions. 

Later, a high-throughput approach based on ChIP is 
known as ChIP-SAGE (Schones et al., 2011; Schones 
and Zhao, 2008). In short, ChIP is carried out and 

followed by SAGE (Serial Analysis of Gene 
Expression). More close to ChIP-seq, short sequence 
tags of 21 bp are extracted from the sequencing library 
and mapped to a reference genome. The number of 
tags that are mapped on a genomic region reflects the 
histone modification level of that region. Since there 
is no probe hybridization issue involved in the 
technology, the results of ChIP-SAGE tend to be more 
quantitative than ChIP-chip, though no direct 
comparisons of the two techniques are made. However, 
few studies use ChIP-SAGE for the apparent 
limitations of the technology and also the advent of a 
quite more cost-effective yet more sensitive 
alternative technology, that is, ChIP-seq (Park, 2009). 

Today, ChIP-seq is generally the preferred method for 
studying genome-wide histone modification patterns, 
which allows tens of millions of DNA targeted by 
histone modifications to be sequenced in an 
acceptable time period. ChIP-seq is proven to have 
low error rates, high specificity and high sensitivity, 
while keeping cost per library acceptable for 
researchers (Johnson et al., 2007). Different to 
ChIP-chip, ChIP-seq completely eliminates potential 
errors of cross-hybridization. The dominating service 
provider of ChIP-Seq is illumina, using a high- 
throughput massively parallel signature sequencing- 
like technique developed by Solexa (Cuddapah et al., 
2009; Whiteford et al., 2009). Briefly, the ChIP DNA 
is ligated to adaptors followed by limited amplification 
to generate ~200 ng of DNA that is then bound by 
hybridization on a solid surface. A short sequence 
(25~50 bp) for 30~60 million DNA templates is then 
sequenced from sequence end by ‘sequencing-by- 
synthesis’, a modified Sanger sequencing procedure. 
ChIP-Seq was initially done in CD4

+ T cells to 
investigate genome-wide histone modifications 
(Barski et al., 2007). Conceptually, the number of 
sequenced reads mapped to a genomic locus is 
proportional to its histone modification level. Two 
important merits of ChIP-Seq included less need for 
PCR amplifications and independence of probe 
hybridization, making it probably more quantitative 
and comparable for different genomic regions 
(Johnson et al., 2007). An additional concern for next 
generation sequencing based histone modification 
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profiling is how deeply to sample each library (Liu et 
al., 2010). Though sequencing with a large scale over 
saturation which means that further sequencing would 
fail to discover additional regions above background 
provides a full coverage and improves confidence of 
histone modification of interest, sequencing below or 

up to saturation may be sufficient to keep the 
sequencing cost acceptable while not significantly 
decreasing coverage. Refer to Table 1 for a 
comparison of ChIP-chip, ChIP-SAGE and ChIP-Seq 
techniques. 

Table 1 Comparison of ChIP–chip, ChIP–SAGE and ChIP–Seq 

 ChIP-chip ChIP-SAGE Chip-seq 

Quantification Limited quantitative and depends on 

the hybridization efficiency 

Quantitative Quantitative 

Resolution Depends on size of the chromatin 

fragments for ChIP 

Depends on restriction enzyme sites Depends on the size of the 

chromatin fragments  and 

sequencing depth 

Cost High for whole-genome tiling arrays More expensive than ChIP–Seq Low 

Limitation Only pre-selected genomic regions on 

a microarray 

Recognition sites for the restriction 

enzyme 

Only non-repetitive regions 

 

2 Large Data Resources of ChIP-seq Histone 
Modifications 
Hundreds of ChIP–seq experiments were carried out 
by the Encyclopedia of DNA Elements (ENCODE) 
Consortium, which is a valuable data source and 
provide effective sequencing protocols (Birney et al., 
2007). Considering the diversity of cell types being 
assayed and will be assayed in ENCODE, it is useful 
to mine knowledge of tissue-specific and/or cell-type- 
specific histone modification patterns for various 
genomic elements from the ENCODE data. However, 
it should be noted that the success of a ChIP 
experiment highly depends on highly specific 
antibody to the bound histone modifications (Liu et al., 
2010). Antibody quality varies, even between 
independently prepared lots of the same antibody, as 
shown in a recent assessment of antibodies in the 
ENCODE and the model organism ENCODE 
(mod-ENCODE) projects (Egelhofer et al., 2011). In 
this study, ~25% failed in specificity tests and 20% 
failed in immunoprecipitation experiments. Thus, 
caution is needed to interpret the histone modification 
ChIP-seq data, especially in comparisons of different 
histone modification patterns. 

modENCODE project was launched to provide a 
comprehensive encyclopedia of genomic functional 
elements in the model organisms such as C. elegans 
and D. melanogaster (Washington et al., 2011; Muers, 
2011). The data contents range from gene structure, 
mRNA and ncRNA expression profiling to transcription 
factor binding sites, histone modifications and others. 
All the data is publicly available for download and for 
publication uses. 

The Epigenomics resource (www.ncbi.nlm.nih.gov/ 
epigenomics) at the National Center for Biotechnology 
Information (NCBI) is a comprehensive public 
resource for whole-genome histone modification and 
other epigenetic modification data sets (Fingerman et 
al., 2011). The data are based on epigenetic 
modification data from the Gene Expression Omnibus 
(GEO) database (Barrett and Edgar, 2006). The 
resource is user-friendly and continues to be updated. 
The Epigenomics resource is highly integrated with 
other NCBI databases (Baxevanis, 2008), including 
the Gene database (Maglott et al., 2011) and PubMed 
(McEntyre and Lipman, 2001) to facilitate uses. There 
are over 1100 data tracks encompassing five 
well-studied species in 2011. 
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Aiming to catalyze basic biology and disease-oriented 
research, the NIH Roadmap Epigenomics Mapping 
Consortium (http://www.roadmapepigenomics.org/) is 
another public resource of human epigenomic data 
(Bernstein et al., 2010). The consortium maps histone 
modifications and other chromatin modifications in 
various cell types that may represent the normal 
counterparts of tissues and organ systems involved in 
human disease. Histone modifications are also assayed 
by ChIP-seq, which are followed by rigorous 
specificity tests to ensure antibody specificity. In 
addition, common cell sources are collectively 
profiled and compared, ensuring consistency between 
the different data-collection centers. 

3 Tools of Analysis for Next-Generation Histone 
Modification Data 
Analysis of histone modification ChIP-seq data 
generated on a next generation sequencing platform 
remains a challenge due partly to the rapid 
development of many next generation sequencing 
platforms. Analysis of histone modification data 
generated by next generation sequencing can be 
broken into two sections. 

3.1 Alignment tools for next-generation histone 
modification data 
Data generated from a next generation sequence 
platform are base sequences (Illumina Genome 
Analyzer, 454 FLX) or color space base transitions 

(SOLiD) together with associated quality scores. The 
beginning step of analysis of ChIP-seq histone 
modification data is to align reads in ChIP-seq data 
downloaded from a public resource or obtain from a 
service provider to a reference genome assembly. The 
result of the analysis would be a data set consisting of 
the genomic coordinates of the read alignments and 
strand on the reference genome. Many next generation 
sequencing aligners have been developed to map 
sequenced reads against a reference genome (Pepke et 
al., 2009; Kim et al., 2011; Schones et al., 2011; 
Schones and Zhao, 2008; Hirst and Marra, 2010). The 
majority of the aligners use a ‘seed and extend’ based 
algorithm where a sub-string within a read is aligned 
to either a hash table or more recently a suffix array 
generated from Burrows–Wheeler transform of the 
reference genome. Read is ‘extended’ up to the 
maximum read length on the genome until a match is 
found. The SAM/BAM file format is a standardized 
file format that such aligners can output. Though these 
aligners have minor differences in speed and accuracy, 
these differences do not have significant impacts on 
overall mapping rates and accuracies (Wilbanks and 
Facciotti, 2010). End users can choose one of these 
aligners according to the advice from other 
researchers or refer to related paper. The aligned file 
may be viewed directly on a genome browser or 
further processed through peak calling. We listed 
many common short read aligner tools for ChIP-seq 
data, as shown in Table 2. 

Table 2 A subset of short read aligners available for histone modification ChIP-seq alignment 

Software tool Web address 

Seed and extend strategy 

MAQ http://maq.sourceforge.net/ 

SOAP http://soap.genomics.org.cn/index.html 

SHRiMP http://compbio.cs.toronto.edu/shrimp/ 

ZOOM http://www.bioinfor.com/zoom 

BFAST http://sourceforge.net/projects/bfast/ 

Using a hash table or more recently a suffix array generated from Burrows–Wheeler transform 

BOWTIE http://bowtie-bio.sourceforge.net 

BWA http://bio-bwa.sourceforge.net 

SOAP2 http://soap.genomics.org.cn/index.html 
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3.2 Peak calling tools for next-generation histone 
modification data 
Peak calling algorithms transform raw read alignments 
into peaks - regions of significant tag enrichment. 
Peaks are considered to be associated with histone 
modification occupancy, which can be modeled by 
many peak calling tools (for a recent review see 
(Pepke et al., 2009)). Some algorithms simply merge 
mapped tags, while others use strand specific 
information to find peaks more precisely. Some peak 
calling tools need a control sequencing ChIP-seq 
library while others can still work without control. 
Given there are several known sources of sequencing 
bias of ChIP-seq, peak calling results without a 
control library are not reliable. Confidence for mapped 
peaks is quantified using p-value or false discovery 
rate (FDR), based on the difference of ChIP library 
and control library, though different peak-calling 
algorithms differ a lot in details. Generally, such tools 
can be divided into two parts where two main 
strategies are used. The first strategy primarily 
searches for histone modification marks that tend to 
reach a summit in their genomic distribution such as 
H3K4me3 or H3K27ac and attempts to model the tag 
distribution of ‘peaks’. Though there are a large 
number of peak calling software packages, not all of 
them can meet the need of the first strategy for calling 
enriched histone modification domains. The second 
strategy is therefore suitable for histone modifications 
with more broad distribution patterns such as 
H3K36me3, which can be detected by peak calling 
software designed for histone modifications. Publicly 
available peak-calling algorithms that are suitable for 
histone modification ChIP-seq data are listed in Table 
2 and several related reviews are available elsewhere 
(Pepke et al., 2009; Wilbanks and Facciotti, 2010; 
Szalkowski and Schmid, 2011). Other packages not 
listed in the table may be involved in commercial 
software packages that also contain peak-calling 
functionality. 

Zang et al. analyzed the score distribution in a 
genomic background model of random reads, and 
employed their theory to identify spatial clusters that 
are unlikely to appear by chance, which was 
implemented as a software SICER (Zang et al., 2009). 

Rashid et al. developed ZINBA (Zero-Inflated 
Negative Binomial Algorithm) to identify enriched 
genomic regions of ChIP-seq, which models and 
accounts for factors that co-vary with background or 
experimental signal, such as G/C content (Rashid et 
al., 2011). Xu et al. proposed a linear signal–noise 
model, where a noise rate was introduced (Xu et al., 
2010). They developed an iterative algorithm to 
estimate the noise rate using a control library, and 
derived a library-swapping strategy to estimate the 
FDR. The algorithm was implemented as software, 
named CCAT (Control-based ChIP-seq Analysis Tool). 
Applications to H3K4me3 and H3K36me3 datasets 
showed that CCAT predicted significantly more 
ChIP-enriched sites that the previous methods did. 
Zhang et al. present a Perl based software 
Model-based Analysis of ChIP-Seq data, MACS, to 
analyze ChIP-seq data (Zhang et al., 2008). MACS 
has a nomodel parameter to support for broad 
distribution pattern of histone modification such as 
H3K36me3. Boyle et al. developed F-seq to detect 
open chromatin regions, which can also be used for 
histone modification ChIP-seq data (Boyle et al., 
2008). The important parameters of these algorithms 
are shown in Table 3. 

The diversity of such peak calling tools is a result of 
the rapid progress and also diversity of sequencing 
technology. Researchers undertaking histone 
modification studies based on ChIP-seq should judge 
which tool would be most suitable for their own data. 
However in near future, it is expected that such tools 
will be standardized in epigenomic research. 

4 Differential Histone Modification Region 
Identification Tools for Next-Generation 
Histone Modification Data 
Differential histone modification sites (DHMSs) are 
important for studying the dynamic nature of histone 
modification regulations among various cell types, 
stages or environmental responses. Though ChIP-seq 
are less prone to error due to relatively long read 
length, several procedures such as sample preparation, 
tags amplification and sequence alignment pose some 
challenges in comparing different ChIP-seq data to 
extract true biologically related signals (Taslim et al., 
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Table 3 Important parameters for each peak calling algorithm 

Algorithm Important parameters 

CCAT Minimum score: minimum score of normalized difference 

Minimum count: minimum number of read counts at the peak  

Moving Step: step of window sliding 

SlidingWinSize: size of sliding window 

Bootstrap pass: number of passes in the bootstrapping process 

MACS NoLambda: if True, MACS will use fixed background lambda as local lambda for every peak region 

NoModel: whether or not to build the shifting model 

MFold: regions within MFOLD range of high-confidence enrichment ratio against background to build model 

PValue: p-value cutoff for peak detection 

SICER WindowSize: size of the windows to scan the genome width 

GapSize: allowed gap in base pairs between islands 

FDR: false discovery rate controlling significance 

ZINBA Selectmodel: Specifying select model = FALSE skips the model selection process altogether and may save a 

significant amount of time 

extension: average fragment library length (size selected)  

winSize: Selecting a larger window size increases speed of analysis but decreases resolution and sensitivity to 

detect enrichment 

offset: Smaller non-zero offset distances increase sensitivity but also increase computational builden 

FDR: FDR = TRUE specifies the model to use the FDR threshold rather than posterior probabilities. This typically 

results in more liberal peak calls. If false, then uses posterior probability to threshold peaks using 1-threshold. 

F-seq FeatureLength: feature length 

Threshold: standard deviations 

2009). Though we would expect all differences of 
samples to reflect the biological conditions, there are 
more factors that cannot be modeled and thus may 
bias the results. Effective computational and statistical 
approaches are necessary to reliably detect differential 
regions from different ChIP-seq data. 

Previously, Xu et al. proposed an approach ChIPDiff 
for the genome-wide comparison of histone 
modification enriched regions identified from 
ChIP-seq (Xu et al., 2008). They employ a hidden 
Markov model (HMM) to infer the states of histone 
modification changes at each genomic location. 
Huang et al. developed an effective framework to 
identify genome-wide differential histone 
modification regions (Huang et al., 2011). They 
implemented a software tool EpiCenter that can  

efficiently perform relevant data processing (Huang et 
al., 2011). In addition, Taslim et al. apply a two-step 
non-linear normalization method based on locally 
weighted regression (LOESS) approach to compare 
ChIP-seq data across multiple samples and model the 
difference using an Exponential-Normal mixture 
model (Taslim et al., 2009). Though not explicitly 
designed for histone modification ChIP-seq data, 
further study should evaluate the power of its 
application in histone modification ChIP-seq data. 

5 Visualization Tools for Next-Generation 
Histone Modification Data 
Many web-based and standalone tools are available 
for visualization of aligned epigenomic data including 
histone modification ChIP-seq data sets. The most 
widely used tool is the Genome Browser maintained 

C
o
m

p
u
ta

tio
n
a
l M

o
le

c
u
la

r B
io

lo
g
y
 



 
 
 
     Computational Approaches to Analyzing Histone Modification Next-Generation Sequencing Data 

 

7

by the University of California Santa Cruz (UCSC) 
(Dreszer et al., 2012). A local installation of UCSC 
Genome Browser is favored by many researchers to 
visualize unpublished ChIP-seq data. Presented as 
linear tracks in the context of genome annotations, 
UCSC is one of the early visualization tools for 
genome-wide data and has influences over later 
related tools. While extremely powerful for manual 
genome viewing, it is hard to visualize many large 
ChIP-seq data simultaneously. A few genome 

browsers developed later tend to support more for 
large ChIP-seq data in BAM format, such as GBrowse, 
GenomeView (Abeel et al., 2012), JBrowse (Skinner 
et al., 2009) and ABrowse. In addition, standalone 
tools such as IGV and IGB are also favorable tools to 
view extremely large aligned ChIP-seq data. Anyone 
who cannot establish browser-based tools can also use 
such standalone tools. The useful visualization tools 
are shown in Table 4. 

Table 4 The list of more visualization tools for histone modification ChIP-seq data 

Web server / Software Website / Download Link 

UCSC Genome Browser http://genome.ucsc.edu/ 

GBrowse http://www.gbrowse.org/index.html 

Ensembl http://asia.ensembl.org/index.html 

GenomeView http://genomeview.org/ 

JBrowse http://jbrowse.org/ 

ABrowse http://www.abrowse.org/ 

Artemis http://www.sanger.ac.uk/resources/software/artemis/ 

Avadis Genome Browser http://www.avadis-ngs.com/features/genome_browser 

IGV http://www.broadinstitute.org/igv/ 

IGB http://bioviz.org/igb/ 

6 Downstream Analysis Tools for Next- 
Generation Histone Modification Data 
Peak calling is generally followed by downstream 
analyses to annotate and characterize the enriched 
regions by specific histone modifications. Usually, 
genomic annotations are also needed to discover 
potentially interesting associations with enriched 
histone modification regions. Annotations are 
available from many public repositories such as 
UCSC, Ensembl (Flicek et al., 2012) and many 
scattered websites. To annotate the enriched histone 
modification regions, it is helpful to show the genomic 
landscape of such regions in the context of various 
common genomic annotations such as chromosomes 
and genes to search for interesting biological 
associations. For example, finding a possible 
relationship with enhancers by comparing position of 
H3K27ac peaks with known enhancers and even by 
more advanced bioinformatics analysis. Many tools 
can achieve this, such as Galaxy (Goecks et al., 2010)  

and Bedtools (Quinlan and Hall, 2010). Some 
visualization tools such as CEAS (Shin et al., 2009) 
and ChIPseeqer (Giannopoulou and Elemento, 2011) 
can support displaying average histone modification 
enrichment signal within/near genomic elements such 
as enhancers and gene initiations while do not require 
peak calling beforehand, which helps biologists to 
better comprehend histone modification patterns. 

In addition, it is also useful to explore enriched 
histone modification peaks in known genomic 
elements to obtain a global view of potential 
regulatory function and localization preference of 
specific histone modifications without any specific 
prior knowledge. Particularly, it is of interest to study 
the preferential target of specific histone modifications 
in gene structure such as exons, promoters and distal 
upstream regions. The two complementary approaches 
are both common in chromatin biology study. 
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Researchers can choose one or both based on their 
own biological hypothesis. 

7 Regulatory Histone Modifications for Gene 
Expression 
The accumulating histone modification ChIP-seq data 
enables researchers to carry out global chromatin 
knowledge mining, which is of great interest in 
epigenetic field. From a computational perspective, 
one can leverage such data to analyze interactions 
among histone modifications by different proposed 
algorithms. Yu et al. carried out a pioneering study to 
infer combinatorial relationships among histone 
modifications and other transcriptional regulators 
based on the associations with gene expression by a 
proposed Bayesian network (Wood et al., 2011). They 
constructed chromatin regulatory networks and 
inferred many chromatin interaction relationships 
based on a set of 23 ChIP-seq data in human CD4+ T 
cells, the most comprehensive histone modification 
data at that time. A number of further studies show 
even more complex correlations between histone 
modifications, genomic elements and gene expression. 
For example, Karlić et al. used linear regression model 
to further explore the similar question, finding that 
genes with promoters of high GC contents and low 
GC contents are regulated by different sets of histone 
modifications (Karlic et al., 2010). Costa et al. further 
applied a mixture of linear regression models on 
H3K4me3 and H3K27me3 and found that they were 
more predictive for gene expression compared to 
transcription factor binding (Beck et al., 2012). Rego 
et al. used sparse linear regression mixture models to 
model gene expression and performed an efficient 
feature selection of transcription factors (do Rego et 
al., 2012). Using the model, the authors therefore 
identified blood development related histone 
modifications and transcription factors (do Rego et al., 
2012). Interestingly, these studies modeled gene 
expression by different computational models, with 
transformations of tag counts as input. However, other 
approaches used other derived features such as peak 
shape and location, as well as signal frequencies to 
model gene expression. Beck et al. proposed a new 
strategy that quantifies the ChIP-seq profile, making 
use of the pattern and location of the signal (Beck et 

al., 2012). Ucar et al. introduced a subspace clustering 
algorithm to exhaustively identify combinatorial 
modification patterns and also identified 
combinatorial histone modification signatures for 
different classes of functional DNA elements (Ucar et 
al., 2011). Altogether, algorithms and models using 
histone modification ChIP-seq maps of different cells 
and developmental stages aid in understanding how 
chromatin modification network regulates gene 
expression. 

8 Conclusions and Perspectives 
The importance of histone modifications has 
motivated the continued accumulation of ChIP-seq 
data to identify and characterize histone modifications 
and the combinatorial and regulatory roles in gene 
expression. ChIP-seq is in fact the standard for 
identifying genome-wide histone modification 
landscape. However, technical and computational 
limitations are still an obstacle to reliably deriving 
biological knowledge from next-generation ChIP-seq 
data. Here, we focus on the computational aspects of 
histone modification ChIP-seq data processing from 
raw reads to downstream analysis. 

In the last five years, next generation sequencing has 
brought epigenetic studies to a rapid developing era. 
The study of histone modifications has been 
evolutionarily changed from methodology to 
biological explanation. A large number of histone 
modification ChIP-seq data can be downloaded from 
public databases, such as NCBI GEO. This 
development is expected to continue as third 
generation sequencing platforms will soon be 
commercialized. However, the second-generation 
sequencing platforms will still be prevalent for a long 
time. Therefore, it is necessary to grasp the basic 
concepts and approaches of processing the 
second-generation sequencing data. 

It is obvious that there are many different tools to 
carry out same tasks due to continued development of 
immature next-generation sequencing technology. In 
near future, it is expected that the processing methods 
or metrics will be greatly standardized. The key to 
achieving this end is to study available computational 
metrics or develop a new metrics, similar to base 
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quality score used in genomic studies, for enrichment 
based histone modification data. If developed, a 
common metric would enable meaningful 
comparisons among different ChIP-seq experiments, 
which would be critical to allow for meta-analyses of 
these rich data sets in future. 

Although histone modification data are being 
accumulated at an unprecedented speed, the 
development of more efficient computational tools 
that are necessary to process and integrate a large 
number of data has lagged a little behind. Differential 
histone modification identification approaches are not 
only useful for comparing different biological samples, 
but also useful for deciphering disease related histone 
modification patterns. In fact, recent research has 
proven the power of histone modification markers in 
diagnosis and therapy (Zhao and Zhang, 2011). To be 
able to discern the altered histone modification 
patterns in various diseases, researchers need to 
continue developing and comparing more powerful 
tools related to histone modification differential 
identification based on next-generation sequencing 
data. More web-based and stand-alone tools with 
better display effect and more support for a large 
number of data tracks are highly favorable, which will 
be useful to compare histone modification data of 
various types in developmental stages, disease types 
and so on. We envision that the advances of 
computational approaches will bring more about a 
bright future for large-scale histone modification 
studies. 
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