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Abstract DNA methylation plays important roles in the development of cancers. Previous studies have identified the differentially

methylated sites (DMSs) between cancer and normal control. However, the methylation variations across multiple cancers have not

been revealed. In this study, we identified DMSs among six human cancers (C-DMSs) and DMSs among five normal control tissues

(T-DMSs). It is revealed that C-DMSs are highly overlapped with T-DMSs. By excluding the T-DMRs from C-DMRs, 4159 bona

fide C-DMSs were selected as methylation variations across multiple cancers. Further analysis confirmed the roles of bona fide

C-DMSs in regulation of cancer-related gene expression differences. Moreover, the genes related with these bona fide C-DMSs

showed enrichment in the biological processes such as cell membrane components, cell adhesion, cell migration, immune response

and cell proliferation, and also the pathways in cancer and bladder cancer. In addition, twenty-eight genes are targeted by

hsa-miR-323 which participates in tumorigenesis. In the end, we identified potential cancer-related genes by extracting protein

interaction sub-network. This study provides a new framework for mining the potential cancer-specific methylation markers and

oncogenes.
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Background
DNA methylation plays an important role in the
development of cancers (Esteller, 2008). Cancer is a
complex collection of diseases that differ on basis of
the tissue of origin. Most of cancer deaths are due to
the metastasis of cancer cells from its original site to
another area of the body (Rodenhiser, 2009; Bhatia et
al., 2012). Besides genetic contributors to metastasis,
there are also epigenetic alterations involved in
cancer metastasis. DNA methylation of promoters in
some genes take part in a wide variety of essential
molecular pathways related with metastasis (Heng et
al., 2010). The recent study by Fang et al.
characterized the methylomes of breast cancers with
diverse metastatic behavior (Zhang et al., 2006).

However, the cancer-specific alterations and their
effects on carcinogenesis and metastasis remain
obscure.

The investigation of cancer-specific alterations in
DNA methylation enables the mining of the hallmarks
of human malignancies. Previous studies have
identified the differentially methylated regions (DMRs)
between cancer and normal control by bioinformatics
tools such MethMarker (Schuffler et al., 2009). For
instance, Costello et al. identified aberrantly
methylated CpG islands in tumors and tumor-type
specific methylation patterns (Costello et al., 2000). In
addition, further analysis about colon cancer by
Irizarry et al. proved the existence of methylation
alterations in CpG island shores (Irizarry et al., 2009).
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They also found the cancer-specific DMRs between
colon cancer and matched normal mucosa overlap
DMRs among three normal tissues (brain, liver and
spleen) significantly. Furthermore, Hansen et al.
identified colon cancer-specific differentially
DNA-methylated regions that may contribute to tumor
heterogeneity (Hansen et al., 2011). Identification of
more cancer-specific abnormal methylation markers
should be beneficial for mining of therapeutic and
diagnostic indicators as DNA methylation is
somatically heritable and reversible.

High-throughput methylation profiling technologies
makes it possible to quest the methylation variations
among multiple cancers. Illumina Human Methylation
27 BeadChip allows researchers to interrogate the
methylation status of more than 27000 highly
informative CpG sites spanning 14,475 genes
including 1,126 cancer-related genes (He et al., 2007).
This high-density panel lets researchers profile up to
12 samples in parallel, which makes it adequate for
case-control studies. Thus, this technology has been
widely used to profile the methylation patterns of
cancers and their normal control tissues (Calin and
Croce, 2006; Wang et al., 2007; Yoon and De Micheli,
2005; Weber et al., 2005).

However, there has not been a comprehensive
understanding of the location and function of DMRs
among different cancers (C-DMRs). Thus in this study,
we focused on following two questions by analyzing
the methylation states of more than 27,000 CpG sites
located in gene promoters in six different cancers and
five corresponding normal controls. First, where is the
methylation variation among multiple cancers? Taking
into account DMRs among normal tissues (T-DMRs)
which may play a role in cellular identity and the
regulation of tissue-specific genome function (Rakyan
et al., 2008), we analyzed the relationships between
C-DMRs and T-DMRs and identified the bona fide
C-DMRs. Second, what are function roles of these
methylation variations among multiple cancers? To
this end, we carried out a comprehensive study in
regulatory mechanism, functional annotation and
protein interactions on the genes related with bona
fide C-DMRs.

1 Results
1.1 DNAmethylation discriminates human tissue types
In order to analyze the methylation patterns in
different human cancers and their corresponding
normal tissue, we obtained methylation states of
27543 CpGs in 297 samples from six cancers and five
matched normal control tissues (Materials and
Methods). To view the methylation patterns in
different cancers and tissues, we performed
hierarchical clustering using Euclidean distance. The
hierarchical clustering in all 297 samples shows the
similar methylation pattern among the samples
representing the same tissue or cancer. The
hierarchical clustering based on the mean methylation
levels among all the replicate samples per
tissue/cancer also perfectly discriminated among
different tissue types, regardless of the normal or
disease status (Figure 1A).

For example, there are three main methylation clusters:
the first one encompassing the normal plasma,
multiple myeloma cancer and plasma cell leukemia,
the second one encompassing normal brain and
Glioblastoma cancer, and the third one encompassing
normal prostate and prostate cancer. Exceptionally, we
observed the clustering of colorectal cancer and breast
cancer, and the clustering of normal colorectal and
normal breast. The possible interpretation for this
observation could be the previous finding that
colorectal cancer and breast cancer own the common
susceptibility genes (Garcia-Patino et al., 1998) and
aberrant methylation of the common suppressor genes
(Agrawal et al., 2007). The hierarchical clustering
using Pearson correlation gives exactly the same
observations motioned above. It is indicated that the
methylation patterns among different states of the
same tissue are more similar than those among
different tissues.

1.2 The similarity of methylation pattern between
cancer and corresponding normal control
We explored the similarity of methylation patterns of
CpG sites between cancer and corresponding normal
control globally. It is interesting that multiple
myeloma cancer and plasma cell leukemia showed
obvious lower methylation levels than other cancers,
and their corresponding normal tissue plasma also
showed lower methylation levels than other normal
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Figure 1 Methylation pattern of 27543 CpGs in various cancers and tissues
Note: (A) Clustering of human cancers and normal tissues using methylation levels in 27543 CpGs. Columns represent individual
samples (cancers or normal tissues), and rows represent CpGs. The heat map shows methylation levels, with being more methylated
and blue less. (B) Methylation levels of 27543 CpGs in 11 cancers/tissues. (C) Methylation levels of CpGs located in CpG islands in
11 cancers/tissues. (D) Methylation levels of CpGs located out of CpG islands in 11 cancers/tissues. (E) Methylation levels of CpGs
with different distance to TSS
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tissues (Figure 1B). The similar distribution of
methylation levels between cancer and the
corresponding normal tissue is revealed.

Further analysis on the methylation of CpGs in CpG
islands and those out of CpG islands showed the same
result. The methylation levels of CpGs in CpG islands
are lower than those of CpGs out of CpG islands. For
the CpGs in CpG islands, the methylation levels in
cancers were slight higher than those in normal tissues
(Fig. 1C), which is consistent with the previous
reports of hypermethylation of the CpG islands in
promoter regions (Koga et al., 2009). Then we
mapped the methylation levels upstream of the
transcription start site (TSS). It is shown that
methylation level increased gradually with increasing
distance upstream of TSS in all cancers/tissues
(Figure 1 D). All these results revealed that cancers
have similar methylation levels with their
corresponding normal tissues. Thus, it is necessary to
take account of the methylation difference among
tissues when we study the methylation difference
among different cancers.

1.3 Identification of differentially methylated sites
among multiple cancers
In order to mine the cancer-specific methylation
markers, we used QDMR to identify the DMSs among
multiple cancers (C-DMSs) and DMSs among
multiple normal tissues (T-DMSs). QDMR assigns
each CpG site two entropy values. The entropy
representing the methylation difference across six
cancers ranges from 0.187 to 19.057, while another
one representing the methylation difference across
five normal tissues ranges from 0.194 to 17.673
(Figure 2 A and B). The lower the entropy is, the
greater the methylation difference across cancers is.

Based on the quantitative methylation difference, all
CpGs were classified as 9645 C-DMSs and 17898
Cs-UMSs by the threshold for six samples given in
QDMR (Figure 2A). By another threshold for five
normal tissues, all CpGs were classified as 8480
T-DMSs and 19063 T-UMSs (Figure 2B). The number
of C-DMSs is more than that of T-DMSs, which
indicates there are more CpGs with differential
methylation across multiple cancers. Most of C-DMSs
show lower methylation levels in multiple myeloma

cancer and plasma cell leukemia than other types of
cancer (Figure 2C). Coincidentally, most of T-DMSs
showed lower methylation levels in plasma than other
normal tissues (Figure 2D). It is suggested that
C-DMSs and T-DMSs possess the similar methylation
pattern among different cancers/tissues. Moreover,
both of Cs-UMSs and T-UMSs show hypomethylation
in all cancers/tissues (Figure 2 E and F).

1.4 Selection of bona fide C-DMSs
Further analysis revealed that 57% (5486/9645) of
C-DMSs are also identified as T-DMSs, compared to
only 31% (8480/27543) expected by chance
(P<0.0001, Figure 3A). Thus, T-DMSs should be
considered when we identify the bona fide C-DMSs.
Here, the bona fide C-DMSs were defined as the CpG
sites identified as C-DMSs across cancers but as
T-UMSs across normal tissues. Using these criteria,
we selected 4159 bona fide C-DMSs among six
cancers. These CpG have different methylation among
cancers than other tissue, and may be cancer-specific
methylation markers. The function of the genes related
with these bona fide C-DMSs may be helpful for
understanding the roles of DNA methylation in
cancers.

1.5 The function of genes with differential methyl-

lation sites
In order to explore the function of the genes with

differential methylation sites, we carried out

functional enrichment analysis for the genes related
with 4159 bona fide C-DMSs among six cancers using

DAVID (http://david.abcc.ncifcrf.gov/). It is revealed

that the genes related with bona fide differentially
methylated sites are enriched with the functions

related with cancer such as cell membrane

components, cell adhesion, cell migration, immune
response and cell proliferation (Table 1). And these

genes are enriched in some important signaling

pathway in cancer. Twenty-eight genes are targeted by
hsa-miR-323 which participates in tumorigenesis

(Plaisier et al., 2012). It is indicated that miRNA may

be a potential regulator of dynamic DNA methylation
and may be the epigenetic marks for multiple cancers.

These results reveal the potential roles of DNA

methylation in cancer by regulating the cancer genes.
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Figure 2 Methylation patterns of C-DMSs, T-DMSs, Cs-UMSs and T-UMSs
Note: (A) Methylation heat map across six cancers of CpGs ranked by entropy derived from QDMR. (B) Methylation heat map
across five tissues of CpGs ranked by entropy derived from QDMR. (C-F) Methylation levels of C-DMSs, T-DMSs, Cs-UMSs and
T-UMSs, respectively

Figure 3 Overlap of T-DMRs and Cs-DMRs

1.6 Identificaiton of potential cancer-related genes
by protein interaction sub-network
Furthermore, we obtained a sub network from the
protein interaction network by selecting the proteins
coded by the genes with bona fide C-DMSs and their
nearest neighbor proteins (Figure 4A). It is shown that
the proteins coded by the genes with bona fide
C-DMSs are prone to interact with other proteins. In
this network, ACSM3 are interacted with most proteins,
and this gene has been reported to be associated with
liver, colon and breast cancer (Chen et al., 2002). In
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addition, functional enrichment analysis on the
proteins in this network reveals these proteins are
potential cancer-related genes (Table 2).

2 Discussion
In this study, we mainly focus on differentially
methylated CpG sites among cancers. Through a

Figure 4 Protein interaction sub-network based on huamn protein interaction network

Note: The proteins coded by the genes with bona fide C-DMSs are in orange, and their nearest neighbor proteins in green
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Table 1 Functional enrichment analysis for genes related with bona fide c-DMSs

Term Genes
Cell-cell signaling EREG, HTR2A, GRIA4, CCL20, KCNIP1
Defense response DEFA1, DEFA6, ITGB6, CCL20, TNFRSF4
Cell adhesion PGM5, DEFA6, ICAM4, MSLN, SIGLEC10
Biological adhesion PGM5, ITGB6, ICAM4, MSLN, SIGLEC10
Cell proliferation PDZK1, MT3, EREG, TNFRSF4, CCL20
Response to wounding EREG, ITGB6, CCL20, TNFRSF4
Digestion CAPN9, CAPN9, TFF2
Defense response to bacterium DEFA1, DEFA6, CCL20
Response to bacterium DEFA1, DEFA6, CCL20
Negative regulation of cell differentiation MT3, EREG, DLL3
Positive regulation of multicellular organismal process EREG, HTR2A, GRIA4
Defense response to fungus DEFA1, DEFA6
Killing of cells of another organism DEFA1, DEFA6
Regulation of synaptic transmission, glutamatergic HTR2A, GRIA4
Cell killing DEFA1, DEFA6
Response to fungus DEFA1, DEFA6
Negative regulation of neurogenesis MT3, DLL3
Negative regulation of cell development MT3, DLL3

Note: Only annotations with p value < 0.05 for GO in all levels are listed here

Table 2 Functional enrichment analysis for Proteins/genes in protein interaction sub-network

Term Gene Num. p value
Multicellular organismal process 152 5.01E-12
Homeostatic process 46 1.01E-09
Cell-cell signaling 44 1.14E-09
Response to chemical stimulus 81 1.36E-09
Regulation of multicellular organismal process 54 4.66E-09
Chemical homeostasis 34 1.64E-08
Response to stress 84 2.98E-08
Wound healing 31 6.02E-08
Response to wounding 42 1.49E-07
Ion homeostasis 27 2.40E-07
Developmental process 107 2.74E-07
Cell proliferation 48 4.31E-07
Cell differentiation 70 6.76E-07
Cell morphogenesis 32 1.36E-06
Localization of cell 29 2.08E-06
Cation homeostasis 20 4.47E-06
Regulation of sequence-specific DNA binding transcription factor activity 16 4.77E-06
Regulation of transcription regulator activity 16 5.84E-06
Response to stimulus 157 6.30E-06
Regulation of cell communication 39 6.88E-06
Protein modification process 65 8.71E-06
MAPKKK cascade 20 8.71E-06
Regulation of signaling 51 1.04E-05
Central nervous system development 26 1.48E-05
Immune system process 51 1.76E-05
Response to drug 18 1.78E-05
Small cell lung cancer 10 5.68E-05
MI:hsa-miR-323-5p 28 1.03E-04
Regulation of actin cytoskeleton 15 1.75E-04
Pathways in cancer 19 3.58E-04

Note: Only annotations with p value <0.05 for GO in all levels are listed here
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series of bioinformatic analysis including cluster
analysis, differential sites identification, network
building and functional enrichment analysis, we
explored the characteristic of differentially methylated
CpG sites and argued that the bona fide differentially
methylated sites among six cancers may be the real
functional elements related with DNA methylation in
cancers. Our study proposed a new strategy to identify
cancer-specific methylation markers which may be
useful for cancer-specific diagnosis, treatment and
prognosis.

3 Materials and Methods
3.1 DNA methylation data
The DNA methylation data were downloaded from
Gene Expression Omnibus (GEO) repository under
accession numbers “GSE17648”, “GSE21304”,
“GSE22867”, “GSE26319” and “GSE26990” (Barrett
et al., 2009). All these data were profiled by Illumina
HumanMethylation27 BeadChip (Human Methylation
27_270596_v.1.2) which allows researchers to
interrogate 27,578 highly informative CpG sites
located within the proximal promoter regions of
transcription start sites of 14,475 consensus coding
sequencing in the NCBI Database (Genome Build 36).
In this study, we used 27,543 CpGs whose
methylation levels have been detected in all 297
samples from six cancers (colorectal cancer, multiple
myeloma cancer, plasma cell leukemia, glioblastoma
cancer, prostate cancer, and breast cancer) and five
matched normal control tissues (colorectal, plasma,
brain, prostate and breast). For each CpG site, the
methylation level in a cancer/tissue is the mean of
methylation levels in all the replicate samples per
cancer/tissue.

3.2 Hierarchical clustering
Both the hierarchical clustering of all CpGs in all 297
samples and the hierarchical clustering in six cancers
and five normal tissues were performed by
GenePattern (http://genepattern. broadinstitute.org)
(Reich et al., 2006). Euclidean distance was used as
the distance measure for both column and row
distance clustering. In order to avoid preexisting bias
in the distance measure, we also repeated the
hierarchical clustering in six cancers and five normal
tissues using Pearson correlation. Other parameters
were used as the default given in GenePattern.

3.3 Identification of C-DMSs and T-DMSs
The C-DMSs and T-DMSs used in this paper were
identified by QDMR which we developed in a
previous study (Zhang et al., 2011). For each CpG site,
the methylation differences among six cancers were
quantified by QDMR. The CpG sites with entropy less
than the DMR threshold (3.259) for six samples given
by QDMR were identified as C-DMSs. In the same
way, we obtained the quantified methylation
differences of each CpG site among five normal
control tissues and the T-DMSs with entropy lower
than the threshold (2.701) for five samples.
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