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Abstract The binary classification of coding and non-coding genes is simplified near to 50 years. Genome-wide transcriptome

studies have revealed that there exist tens of thousands of long non-coding RNAs (lncRNAs), while the functions are being

uncovered slowly. Accurate identification of lncRNAs is the initial step to the systematic characterization of lncRNAs. The diversity

of transcription patterns for lncRNAs challenges the available non-coding RNA prediction algorithms. Until now, prediction of

lncRNAs mostly relies on genomic sequence and cross-species alignment information. Here, we review the main strategies that can

discriminate lncRNA from protein-coding transcripts. Especially, recently available machine learning algorithms are shown efficient

to the rapid and accurate identification of lncRNAs from a large number of putative lncRNAs based on transcriptome assembled

transcripts, which would provide the basis of understanding of lncRNA biology.
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Background
Many studies have shown that the transcriptomes of
mammalian genomes are more pervasive and complex
than previously anticipated (Kapranov et al., 2007b;
Djebali et al., 2012). It has become known that most
of the mammalian genomes are transcribed, once
referred to as “dark matter” (Johnson et al., 2005).

Surprisingly, the noncoding transcriptomes are
receiving more and more attentions until recent few
years (Maher, 2012). In last few years, the discovery
and functional analysis of a large number of small
RNAs (length <200 nt) have dominated the
non-coding RNA field. These small RNAs can further
be grouped into distinct categories (e.g., miRNAs,
piRNAs, and endogenous siRNAs) based on
molecular biology features such as genomic, structural
and translational features (Dinger et al., 2008). In
contrast, the number of lncRNAs (>200 nt) appears to
be even larger than small RNAs, which is also
revealed by tiling array studies (Kapranov et al.,

2007a). Though some of lncRNAs may be precursors
of small RNAs, it is believed that many lncRNAs are
transcribed as independent transcripts either
polyadenylated or non-polyadenylated (Kiyosawa et
al., 2005), however non-polyadenylated RNAs have
not been well studied to date. Non-polyadenylated
transcripts may harbor a large number of lncRNAs,
which may be underrepresented in early ESTs and
cDNA data. Currently, no tool in principle allows the
reliable identification of both of long (>200 nt) and
short (<200 nt) transcripts, as the biology is quite
different (Solda et al., 2009). To date, many tools and
algorithms are available for lncRNA prediction.

The biological importance of the lncRNAs may still
be underestimated, though lncRNAs habour
regulatory functions of different kinds (Prasanth and
Spector, 2007). This is partly due to that lncRNAs are
similar to protein-coding mRNAs in genomic
sequences and lack obvious features to distinguish
from other categories of non-coding RNAs. Few lncRNAs
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are characterized functionally and the regulatory
importance of lncRNAs is still under debate.
Large-scale identifications of lncRNAs have met
dilemma that the overlap rate between different
projects is generally poor, though using similar
cDNA library construction (Carninci et al., 2005;
Imanishi et al., 2004), highlighting the difficulties

to discriminate lncRNAs from protein-coding
RNAs. Computational approaches and metrics are
candidate approaches that are efficient to identify
lncRNAs from genomic sequences and distinguish
from protein-coding transcripts are discussed here.
We list the available software tools that are easy to
use in Table 1.

Table 1 A subset of softwares available for lncRNA identification

Software tool Web address

CRITICA (Badger and Olsen, 1999) http://www.ttaxus.com/software.html

ESTScan (Lottaz et al., 2003) http://myhits.isb-sib.ch/cgi-bin/estscan

CPC (Kong et al., 2007) http://cpc.cbi.pku.edu.cn/

PORTRAIT (Arrial et al., 2009) http://bioinformatics.cenargen.embrapa.br/portrait/

RNAcode (Washietl et al., 2011) http://wash.github.io/rnacode/

CNCI (Sun et al., 2013b) http://www.bioinfo.org/software/cnci/

CPAT (Wang et al., 2013) http://lilab.research.bcm.edu/cpat/index.php

iSeeRNA (Sun et al., 2013a) http://sunlab.lihs.cuhk.edu.hk/iSeeRNA/

1 Basic Strategy to Discriminate between
lncRNAs from Protein-coding RNAs
There are mainly two approaches that are commonly
used for distinguishing lncRNA from protein-coding
RNA sequences, open reading frame (ORF)-based
approaches and comparative genomic analysis-based
approaches.

1.1 Open reading frame (ORFs) length
ORF length is the mostly commonly used approach to
distinguish lncRNAs from protein-coding RNAs and
is still widely employed in recent algorithms. By
chance, putative ORFs in non-coding RNAs are
expected to be significantly shorter than
protein-coding RNAs (Dinger et al., 2008; Solda et al.,
2009). The threshold of 300 nt (putative 100 codons)
is often used to screen for protein-coding RNAs. In
accordance with this, >95% of protein sequences in
Swiss-Prot database have >100 aa in length. The
threshold seems somewhat arbitrary as for a few
well-characterized lncRNAs, H19, Xist, Gtl2 and
Kcnq1ot1, because all have putative ORFs >100
codons, violating the rule based on this threshold
(Dinger et al., 2008; Solda et al., 2009). Therefore, the
ORF length metric appears problematic under the
given cutoff value. In addition, some relatively short
proteins (<100 aa) may by chance be misclassified as
lncRNAs.

1.2 ORF conservation
An alternative approach to overcome the problems of
ORF length is to assess the similarity to known
proteins or protein domains for the putative ORFs of
potential lncRNA transcripts, as occurrence of ORF
conservation in given transcripts may be indicative of
bona fide lncRNAs, which would differ from those
without cross-species orthologs that may be evolved
randomly. Many studies treat transcripts lacking of
ORF conservation as lncRNAs. BLASTX (Gish and
States, 1993), rsCDS (Furuno et al., 2003), Pfam
(Punta et al., 2012) and SUPERFAMILY (Gough et al.,
2001) are programs based on ORF conservation
information. More useful, CSTminer (Castrignano et
al., 2004) has the ability to screen for lncRNAs from
transcriptomes. The predictions based on ORF
conservation are problematic as this approach is
restricted by current protein annotations and some
lncRNAs such as pseudogenes have evolved from
protein-coding RNAs (Duret et al., 2006).

1.3 Comparative sequence analysis
Comparative sequence analysis identify lncRNAs
based on conservation of amino acid sequences in
multiple genome alignments (Dinger et al., 2008;
Solda et al., 2009). One applicable metric is the codon
substitution frequency (CSF), which has been widely
used in large-scale lncRNA identifications. This
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approach is effective based on the expected
probability of nucleotide substitutions in a codon
between a candidate sequence and probable
homologous sequences (Lin et al., 2007). However,
further information that is inherent within multiple
genomic sequence alignments can be exploited.
phyloCSF (Lin et al., 2011), a newly developed
algorithm, exploits a statistical framework to compare
model based on protein-coding genes and another
model with non-coding genes. Unfortunately, no
automated software is available to implement the
algorithm, making it hard for newcomers to follow.
Similarly, RNAcode method (Washietl et al., 2011)
integrates information based on nucleotide
substitution frequency into a framework while without
machine learning component to predict non-coding
RNAs. While the comparative methods are useful to
identify conserved lncRNAs, further approaches that
can achieve fast identifications of lncRNA transcripts
are still needed.

2 Integrative Algorithms to Discriminate
lncRNAs from Protein-coding RNAs
Despite different approaches vary in principle, these
approaches show broad concordance in performance
(Frith et al., 2006). Yet different approaches can be
combined to achieve better effects, as previous studies
have demonstrated. For example, CRITICA algorithm
(Badger and Olsen, 1999) that employs statistical
model and comparative approach was shown to
best-perform among the selected ten bioinformatic
methods for the FANTOM cDNA set (Frith et al.,
2006). Other algorithms use statistical approaches to
integrate distinct categories of signatures, for instance,
polyadenylation sites, splice sites, and sequence
homology. As an example, DIANA-EST uses artificial
neural network method and statistical model to
discriminate coding regions (Hatzigeorgiou et al.,
2001), and ESTScan employs hidden Markov model
(Lottaz et al., 2003).

Recent tools, CONC (Liu et al., 2006), CPC (Kong et
al., 2007), iSeeRNA(Sun et al., 2013a), CPAT (Wang
et al., 2013) and CNCI (Sun et al., 2013b) use
machine learning algorithms to distinguish
protein-coding mRNAs from lncRNAs. These
algorithms distinguish lncRNAs from protein-coding

RNAs based on multiple genome-derived and other
features, for instance, putative peptide length, putative
amino acid composition, protein homologs, RNA
secondary structure, and multi-species protein
alignments.

First, CONC is an algorithm and software that can
classify input transcripts as protein-coding RNAs or
non-coding RNAs based on a machine learning
algorithm (Liu et al., 2006). The CONC algorithm
uses protein related features including RNA secondary
structure, RNA solvent accessible surface area, in
addition to sequence compositional entropy, peptide
length, protein homology and amino acid frequency.
Though CONC works well based on high-quality
full-length cDNAs (Maeda et al., 2006), it is in
practice slow to run for large datasets and lacks of a
web interface. In addition, CONC only reports
‘coding’ or ‘non-coding’ while does not provide
results with detailed explanations and other related
information. CPC (Kong et al., 2007) uses three ORF
related features and three BLASTX-derived features
and incorporates them into Support Vector Machine
(SVM) algorithm. The authors (Kong et al., 2007)
used same data set (5610 protein-coding and 2670
non-coding RNAs) as CONC to obtain a trained SVM
model. Though CPC used fewer signatures than
CONC (6 versus 180) but comparable yet even better
performance was observed. Easy-to-use web tool and
standalone version of CPC are both available to use
(Table 1).

Though protein homologs are very useful to improve
prediction accuracy, these programs using this
information may be inappropriate for prediction from
neglected species such as fungus et al.. PORTAIT
(Arrial et al., 2009), a software based on SVM, was
specifically designed to overcome this obstacle, which
takes into consideration EST sequencing errors,
frameshifts and truncations information.

iSeeRNA is a recently published SVM-based
standalone tool. It was demonstrated to have high
accuracy, balanced specificity and sensitivity for
lncRNAs. iSeeRNA is fast to run, which is an
alternative tool for filtering candidate lincRNAs from
transcriptome assembled data.
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Coding-Non-Coding Index (CNCI) is another recent
tool for lincRNA identification, by using genomic
sequence derived information of adjoining nucleotide
triplets (ANT). CNCI can effectively distinguish
lncRNAs from protein-coding transcripts, which are
especially useful for lncRNAs with incomplete ends
and cis-antisense pairs. CNCI is appropriate for
transcriptome assembled data from less-studied
species, as CNCI can efficiently predict non-coding
transcripts based solely on nucleotide frequency of
transcript sequences.

Wang et al. (2013) found ORF related features and
hexamer usage bias features to be efficient features for
distinguishing between protein-coding and lncRNA
transcript prediction and integrated them into a
logistic regression model (Wang et al., 2013). Based
on trained model, they developed CPAT, which had
both high accuracy and speed, Typically, CPAT is
efficient in running time with four orders of
magnitude in speed faster than CPC and CSF
algorithms, suitable to transcriptome assembled data
for the ever growing RNA-seq community.

In conclusion, SVM framework seems to outperform
previous non-integrative approaches by combining
multiple discriminating features and currently
represents the pioneering tools for non-coding RNA
prediction.

However, one important problem should be noticed
that the incompleteness of full-length transcript
sequences which is caused by incomplete reverse
transcription, genomic contamination and internal
priming of pre-mRNAs in large-scale sequencing can
strongly affect the accuracy of these tools. Given the
low expression levels of most lncRNAs, the putative
lncRNAs may not be assembled efficiently by
transcriptome assembly softwares.

3 Discussion
Many years ago, genome annotation has been a
challenging task when a new genome is sequenced. In
recent years, the task is even more urgent due to deep
transcriptome sequencing. Identifying non-coding
RNA sequences is now one of the most important
steps in genomic element annotations. Considering

most novel lncRNAs are less conserved and
species-specific than protein-coding RNAs, detecting
lncRNAs via alignment-based algorithms seems
impractical.

In this review, we have demonstrated that the genomic
sequence and sequence derived features are the
foundations of algorithms for differentiating lncRNAs
from protein-coding RNAs and can efficiently reflect
intrinsic properties of protein-coding and lncRNA
transcript. Though different studies used different
genomic sequence features, only a few discriminating
genomic sequence based features are efficient to
improve prediction power, and can also significantly
reduced computing cost. Because the tools mentioned
in this article are solely based on sequence intrinsic
composition, they are potentially applicable to species
with only poorly annotated information.

It should also be noted that methods that classify a
given transcript into protein-coding or lncRNA
category are under the assumption that the RNA
functions as protein-coding or non-coding. However,
in real RNA world, a large number of RNAs may be
bifunctional, that is to say, they can act as proteins or
as regulatory long non-coding RNAs (Dinger et al.,
2008). Though the tools mentioned there are powerful
in discriminating protein-coding and lncRNAs, a large
number of putative lncRNAs may be falsely classified
as protein-coding RNAs based on a long ORF
(putative ORFs >100 codons for H19), which is
widely employed in recent algorithms.

Given the increasing next-generation data are
generated by large-scale RNA-seq technology, there is
a growing interest in prediction of lncRNAs. Many
tools for predicting lncRNAs are available. However,
software tools with higher reliability and faster speed
are also needed, which would be useful to filter
biology relevant lncRNA candidates from assembled
transcripts based on RNA-seq data.
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