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Abstract Regulatory long non-coding RNAs have been emerged as a major contribution of cognitive evolution in mammalian 
central nervous system and brain tissues. Though proteins have relatively conserved during evolution, the lncRNAs have evolved 
rapidly to cope with essential and widespread cellular regulation, partly by directing generic protein function. Long non-coding 
RNAs, highly yet specifically expressed in mammalian brain, provide tissue- and neuronal activity-specific epigenetic and 
transcriptional regulation. lncRNAs have been documented to be essential for brain development and be involved in brain related 
diseases. We suggest that lncRNAs are important to modulate diverse central nervous system processes and are the major factor that 
is important to the brain development, which may be employed to develop novel diagnostic and therapeutic strategies to treat brain 
related diseases. Moreover, animal models with altered lncRNA expressions and high-throughput approaches would help to 
understand the mechanisms of lncRNAs in brain development and the etiology of lncRNA-driven human neurological diseases. 
Keywords Long Non-coding RNAs; Central nervous system; Neurogenesis; Brain development; RNA-Seq 

Background 
The central nervous system (CNS) has been under 
high evolution and brain is an advanced animal organs. 
CNS includes distinct categories of neuronal and glial 
cell types. The amazing cognitive and behavioral 
functions in brain may involve in neural networks 
comprised by billions of neurons (Graff and Mansuy, 
2008). It is still unknown of the molecular 
mechanisms about the cooperation among these 
neurons, though advances in epigenetic areas have 
been increasing (MacDonald and Roskams, 2009). 
Based on current view of points and accumulating 
evidences, epigenetic factors are considered to affect 
mammalian development and cell differentiation. 
Furthermore, aberrant epigenetic modification 
changes by DNA methylation and histone 
modifications have key roles in human diseases (Kaut 
et al., 2014; Coppieters et al., 2013; Besingi and 
Johansson, 2014; Zykovich et al., 2013; Bryant et al., 
2014; Sanchez-Mut et al., 2013; Robertson, 2005; 

MacDonald and Roskams, 2009; Liu et al., 2014; Lv 
et al., 2010; Lv et al., 2012; Liu et al., 2011; Zhang et 
al., 2010). For example, the enzymes and complexes 
such as Polycomb proteins and Trithorax-group 
proteins, are basal for developmental processes 
(Kouzarides, 2007; Ringrose and Paro, 2007). 
However, the mechanisms of loci specificity have 
only started to be discovered. Recent evidences 
suggested that the chromatin associated proteins are 
guided by non-coding RNAs (ncRNAs) (Khalil et al., 
2009; Dinger et al., 2008; Mattick, 2009). 

The spatio-temporal expression patterns of ncRNAs 
seem important for CNS function. ncRNAs are 
implicated in a variety of biological processes 
including structural (for example, ribosomal RNAs), 
regulatory (for example, long and micro non-coding 
RNAs) and catalytic processes. In mammalian brain, 
ncRNAs are implicated in brain patterning, neuro- 
genesis, synaptic and neuron connectivity (Mehler and 
Mattick, 2007) and CNS disease (Taft et al., 2010). 
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Long non-coding RNAs (lncRNAs) are ncRNAs that 
are longer than 200 nt and are abundant in brain cell 
types (Mercer et al., 2008). The classical lncRNAs are 
transcribed through the same transcriptional 
machinery as other mRNAs, that is, RNA polymerase 
II (PolII) occupancy in lncRNA promoter and active 
histone modifications that are associated with lncRNA 
promoter and gene body (Ilott and Ponting, 2013). The 
number of all lncRNAs in mouse is estimated as at 
least 40,000, which is more than the number of 
protein-coding genes (Managadze et al., 2013). Most 
lncRNAs are poorly annotated, and their functions 
including the roles in CNS functions have not been 
widely studied. The functions of lncRNAs appear to 
associate with the genomic localization. For example, 
lncRNAs can be in close with development associated 
key genes. Neighboring protein-coding genes can 
exhibit concordant or discordant expression patterns 
with lncRNAs (Dinger et al., 2008; Ponjavic et al., 
2009), implying the potentially regulatory roles of 
lncRNAs. Given most of lncRNAs are specifically 
expressed in brain, the tissue specificity and brain 
region specificity of lncRNAs seems to be 
exceptionally vital for regulating CNS functions 
(Mercer et al., 2008). 

Some lncRNAs can regulate the epigenetic 
modifications of protein-coding genes by cis- or 
trans-acting fashions that need recruiting chromatin 
remodeling factors to particular genomic loci (Khalil 
et al., 2009; Redrup et al., 2009). One classical 
example of this kind is the HOXC loci where a 
lncRNA HOTAIR is transcribed and HOTAIR recruits 
Polycomb protein complex PRC2 to HOXD loci and 
represses HOXD in trans (Rinn et al., 2007). 
 
1 lncRNAs in the central nervous system 
The proximity of lncRNAs to genes related to 
regulatory development proteins implies that lncRNAs 
can play important roles in mammalian organ 
development. Actually, many transcriptomic studies 
have revealed the dynamic lncRNA expression 
profiles and their functions among developing, fetal 
and adult tissues, in additional to embryonic stem (ES) 
cells (Dinger et al., 2008; Sheik Mohamed et al., 
2010), neural cell subtypes (Mercer et al., 2010; Aprea 
et al., 2013; Lin et al., 2011), and brain (Mercer et al., 

2008; Ponjavic et al., 2009; Lv et al., 2013a; Lv et al., 
2013b). 
 
1.1 lncRNA expression in brain and neural 
differentiation 
To quickly explore the brain developmental stage 
specificity and brain specificity, the Allen Brain Atlas 
(http://www.brain-map.org/) is an option. The Allen 
Brain Atlas covers in situ hybridization (ISH) data and 
is a constantly updating website, from which we are 
able to examine the expression of hundreds of 
lncRNAs in various tissues in adult and developing 
mouse brains (Ng et al., 2012a). ~ 64% of 1328 
lncRNAs investigated by Allen Brain Atlas are 
detectable in adult mouse brain and are expressed 
selectively for specific brain regions especially in 
hippocampus and cerebellum (Mercer et al., 2008). 
The brain region specificity is expected as the 
expression is low in whole brain transcriptome 
profiling. Therefore, it is necessary to perform 
transcriptome studies on specific brain regions to 
improve the lncRNA detection power. In addition, in 
situ hybridization maps in Allen Brain Atlas revealed 
that the most lncRNA are expressed in CNS (Mercer 
et al., 2008). The lncRNAs expressed in CNS are 
complex, including imprinted transcripts, cis-antisense, 
intronic and bidirectional transcripts (Carninci et al., 
2005). Furthermore, many lncRNAs expressed in 
CNS exhibited cross-species conservation, which is 
meaningful as conservation may indicate functionality. 
Ponjavic et al. have found over 200 lncRNAs that are 
detectable in developing and adult brain (Ponjavic et 
al., 2009), which are mainly located near 
transcriptional regulators with similar expression 
patterns and a large more conserved lncRNAs may 
await to be discovered in near future. 

Particular lncRNAs which are differentially expressed 
during CNS differentiation are potential regulators in 
mediating neural functions. Sox2, an important 
transcription factor in ES cells, is necessary for neural 
development. One study has demonstrated that 
Sox2OT, a lncRNA containing Sox2 in its introns, is 
expressed in adult neurogenesis (Mercer et al., 2008). 
Another report indicated that Sox2OT might be 
responsible for modulating Sox2 expression (Amaral 
et al., 2009). Taken together, current evidences may 
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suggest that lncRNAs can mediate the expression of 
other factors to orchestrate neural cell identity. 

RNA sequencing (RNA-seq) followed by 
computational analysis has been widely used to 
identify tissue restricted expressed lncRNAs. Kaushik 
et al. had used this approach to identify lncRNA 
transcripts from five different tissues of adult 
zebrafish (Kaushik et al., 2013). They identified 442 
predicted lncRNA transcripts and 77 differentially 
expressed lncRNAs. Within the differentially 
expressed lncRNAs, 61% are brain restricted 
expressed. 

 
1.2 High-throughput approaches to study the 
lncRNAs in CNS development. 
A study systematically found more than 1600 
conserved lincRNAs in four mouse cell types based 
on chromatin signatures (Guttman et al., 2009). The 
cell types they investigated include neural precursor 
cells (NPCs). Their analysis found that those lncRNAs 
that are associated with “brain cluster” are related to 
some brain related biological processes, such as 
hippocampal development and oligodendrocyte (OL) 
myelination.  

The results together with others (Lv et al., 2013a; Lv 
et al., 2013b; Ng et al., 2012b; Qureshi and Mehler, 
2012) have highlighted the importance of lncRNAs in 
regulation of cellular fate in neural cells and brain. 
Increasing evidences suggested that lncRNAs can 
control epigenetic targeting via their ability to bind 
RNA, DNA and protein (Guttman and Rinn, 2012; 
Mercer and Mattick, 2013; Tsai et al., 2010). lncRNAs 
contain functional three-dimensional structures that 
can form scaffolds or molecular ‘sponges’ and in turn 
allow activity-dependent regulation (Tripathi et al., 
2010; Mercer and Mattick, 2013; Tsai et al., 2010; 
Barry et al., 2013). Malat1, as an example, has been 
shown to relate with synapse formation by acting as 
splicing factor ‘sponge’, suggested that lncRNAs have 
alternative splicing functions in neural cells (Anko 
and Neugebauer, 2010). As an earlier mechanistic 
study, a lncRNA related to alternative splicing in 
neuronal cells was reported for Gomafu (Barry et al., 
2013). The expression of Malat1 was generally stable 
during induction of stimulating neurons, implying that 

Malat1 plays a different role in human neuronal 
functions, or perhaps has regulatory functions in 
distinct subtypes of neural cells. In addition, lncRNAs 
are also associated with mRNA transcription, 
translation and decay (Tripathi et al., 2013; Mercer 
and Mattick, 2013). Altogether, the enormous 
regulatory potentials of investigated lncRNAs and 
even more candidates would call for more detailed 
studies about the distinct group of non-coding RNAs. 

The differential lncRNA expression patterns should be 
interpreted by experimental or computational 
functional analysis. As a first step, Mercer et al. 
(Mercer et al., 2010) systematically analyzed 
lncRNAs that had significant changes in expression 
and found that several of these lncRNAs were part of 
or close to protein-coding gene loci with a known 
function in brain and CNS development. In addition, a 
software Scripture was used to reconstruct the 
transcriptome of mouse ES cells, neuronal precursor 
(NP) cells and lung fibroblast cells. The full-length 
transcript structures for most annotated genes and a 
large number of lncRNAs were construct (Guttman et 
al., 2010). Another study found that there were ~170 
lncRNAs that are differentially expressed during 
lineage commitment of neuron and oligodendrocyte 
(OL), neuronal-glial transitions, and developmental 
stages of OL (Mercer et al., 2010). Recently, a study 
used RNA-seq to identify lncRNAs that may be 
important in neurogenic commitment process (Aprea 
et al., 2013). Some selected lncRNAs have been 
validated. Recently, Ramos et al. utilized high- 
throughput approaches including RNA-seq and 
ChIP-seq to identify lncRNAs related to distinct 
neural cell types and lncRNAs having important roles 
in embryonic and adult neurogenesis (Ramos et al., 
2013). 

In addition, more and more lncRNAs were associated 
with conserved enhancer elements that regulate the 
brain development. p300 and H3K4me1 marks have 
been employed in one work to identify enhancers in 
mouse that are mediated by neuronal activity (Kim et 
al., 2010). These predicted enhancers are rich in 
putative lncRNAs, expanding in either direction from 
the CBP binding positions and within 2000 bp from 
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enhancer. The enhancer lncRNAs were also found in 
the intergenic region that are between the Dlx-5 and 
Dlx-6 loci within the Dlx loci. The region covers with 
a piece of conserved intergenic enhancer (Zerucha et 
al., 2000). Dlx-6 is a homeobox element and itself a 
transcription factor and is vital in embryonic brain 
developmnet (Wang et al., 2010). 
 
1.3 Regulation of lncRNA expression in the nervous 
system 
How lncRNAs are regulated in CNS and what factors 
can influence lncRNA expression are not well 
understood. The main ideas are that lncRNAs are 
under similar regulatory mechanisms with that of 
protein-coding genes (Dinger et al., 2008; Guttman et 
al., 2009; Cawley et al., 2004; Mercer et al., 2010; 
Zhang et al., 2009). For instance, Pax2, a transcription 
factor, functions in formation of the mouse brain; 
while Ncrms is a lncRNA that is exactly mediated via 
Pax2 (Bouchard et al., 2005). Interestingly, Ncrms is 
the host gene for miR-135a (Rodriguez et al., 2004), a 
miRNA, which has reversed expression pattern in 
medulloblastoma, compared with normal brain 
(Ferretti et al., 2009). The evidences suggest that 
genetic and epigenetic factors can both mediate 
tumorigenesis. In another example, Sox2, which is a 
pluripotency related transcription factor, plays an 
important role in the preservation of the Neural Stem 
Cells (NSCs) in embryonic and adult brain (Pevny and 
Placzek, 2005). In Sox2 gene loci, a lncRNA exists, 
which is named by Sox2 overlapping transcript 
(Sox2OT). Genomic studies showed that it shares 
same transcriptional direction with the Sox2 gene. 
Sox2 and Sox2OT transcribe stably in mouse 
embryonic stem cells and are down regulated during 
stem cell differentiation. Amaral et al. detected that in 
the neurogenic region of the adult mouse brain 
Sox2OT is expressed and is under dynamic regulation 
during CNS development, suggesting that it can 
regulate the self-renewal and neurogenesis of stem 
cells (Amaral et al., 2009). 

Nkx2.2as, which is a lncRNA antisense to the Nkx2.2 
gene, is transcribed in the embryonic brain and is 
necessary to oligodendrocyte development (Price et al., 
1992). Aberrant transcription of Nkx2.2as in Neural 
Stem Cell (NSC) can induce the oligodendrocyte 

differentiation by Nkx2.2 upregulation, indicating that 
Nkx2.2as regulates NSC differentiation by increasing 
the expression of Nkx2.2 (Tochitani and Hayashizaki, 
2008). 

In addition, recent evidences imply that the perturbed 
epigenetic processes can alter the lncRNA expression 
patterns (Mattick, 2009). When treated with 
trichostatin A (TSA), OL development process is 
changed. OL maturation is inhibited by TSA which is 
a histone deacetylase inhibitor by suppressing 
OL-specific gene expression (Mercer et al., 2010). We 
summarized the examples of loss of gene function 
studies in brain and CNS in Table 1, which can be 
achieved by locally administered RNA interference 
(RNAi) reagents. Taken together, it is indicated that 
lncRNAs are regulated by similar transcriptional and 
epigenetic factors with protein-coding genes. 

Though lncRNAs are expressed across various tissues, 
the functions in brain development can be explored if 
using a traditional knockout approach. For instance, 
mice with knockouts of lncRNAs Hotair (Li et al., 
2013) and Xist (Marahrens et al., 1997) resulted in 
severe phenotypes, but mice with a knockout of the 
ubiquitously and highly expressed lncRNA Malat1 
displayed no obvious phenotype (Eissmann et al., 
2012). Regulation of synaptogenesis (Bernard et al., 
2010), alternative splicing (Tripathi et al., 2010), 
control of cell cycles (Tripathi et al., 2013) and 
diseases (Gutschner et al., 2013) have been reported 
for Malat1, but it is still unknown what the precise 
role is for this abundant and broadly expressed 
lncRNA. The results indicated that further functional 
analyses are needed, which is helpful to uncover the 
functional roles within neural cells. 
 
2 lncRNAs in diseases of the CNS and brain 
Disruptions to genome-wide lncRNA-mediated 
functions could have negative consequences, which is 
particularly important in the mammalian brain and 
nervous system where most tissue-specific lncRNAs 
are expressed. Indeed, it is emerging that lncRNAs are 
involved in the pathology of neurological diseases 
related to imprinting, for instance, Prader–Willi 
syndrome (PWS) and Angelman syndrome (AS) 
(Koerner et al., 2009). Additionally, lncRNAs that are  
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Table 1 lncRNAs involved in brain and CNS development and the resulting phenotypes in model animal systems 

lncRNA Process Phenotype Reference(s) 
Dlx1os Homeodomain transcription 

factor regulation in developing 
brain 

Morphologically normal together with mild 
skull and neurological defects by gene 
inactivation 

(Kraus et al., 
2013) 

Dlx6os1 Homeodomain transcription 
factor regulation in developing 
brain 

Morphologically normal together with altered 
GABAergic interneuron development by 
gene inactivation 

(Feng et al., 
2006) 

Malat1 Tumorigenesis Normal animal development by gene 
inactivation 

(Zhang et al., 
2012) 

Miat Retina development Defects in specification of retina cell types by 
knockdown and overexpression in neonatal 
retina 

(Rapicavoli et al., 
2010) 

Six3os1 Retina development Defects in specification of retina cell types by 
knockdown and overexpression in neonatal 
retina 

(Rapicavoli et al., 
2011) 

Tug1 Retina development Defects in differentiation of photoreceptor 
progenitor cells after knockdown in neonatal 
retina 

(Young et al., 
2005) 

RNCR2 Retina development Knockdown leads to the increase of amacrine 
cells and Müller glial cells in post-natal retina

(Rapicavoli et al., 
2010) 

Vax2os Retina development Defects in differentiation of photoreceptor 
progenitor cells after overexpression in 
neonatal retina 

(Meola et al., 
2012) 

Note: Long non-coding RNAs: new players in cell differentiation and development 
 
Table 2 lncRNAs involved in diseases of the CNS 

lncRNA Genomics Evidence Disease Reference(s) 
Ube3a-as Antisense to Ube3a responsible for repressing 

paternal Ube3a ex- 
pression; silencing of 
paternal Ube3a can 
occur in the absence of 
Ube3a-as 

PWS-AS (Vitali et al., 
2010) 

FMR4 share a bidirectional 
promoter with the 
FMR1 gene 

is silenced in FXS; 
FMR4 does not simply 
regulate FMR1 

FXS (Khalil et al., 
2008) 

ASFMR1 antisense to the 5′
UTR region of FMR1 

is silenced in FXS FXS (Ladd et al., 2007) 

Sox2OT encompasses the 
entire Sox2 gene 

implicated in modulating 
Sox2 expression 

CNS developmental 
abnormalities 

(Amaral et al., 
2009) 

A region in 
2q11.2 

2q11.2 
chromosomal 
region that includes 
DGCR5, a REST 
regulated lncRNA 

VCFS is caused by 
deletions of the region 

velocardiofacial 
syndrome (VCFS) 

(Johnson et al., 
2009) 

NRON mediates the cyto- 
plasmic to nuclear 
shuttling of the NFAT 

NRON is potentially 
associated with DS 
through NFAT 

Down's syndrome (DS) (Arron et al., 
2006) 
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Table 2 Continue 

BACE1-AS Antisense to 
BACE1 

modulates BACE1 gene 
expression; BACE1-AS 
levels are increased in 
tissues from AD 
patients 

Alzheimer's disease (AD) (Faghihi et al., 
2008) 

BC200 Chromosome 11, 
p11.2, an ~600,000 
bp region 

Increased levels of 
BC200 were found in 
brain that are 
preferentially affected 
in AD 

Alzheimer's disease (AD) (Mus et al., 2007) 

ATXN8OS Antisense to 
ATXN8 

implicated in the 
molecular 
pathophysiology of 
SCA8 

spinocerebellar ataxia 
type 8 (SCA8) 

(Daughters et al., 
2009; Koob et al., 
1999; Moseley et 
al., 2006) 

An unnamed 
lncRNA 

associated with the 
cyclin D1 gene 
promoter 

Recruit FUS/TLS to 
repress cyclin D1 

amyotrophic 
lateral sclerosis (ALS) 

(Wang et al., 
2008) 

An unnamed 
lncRNA 

lncRNA transcripts 
derived from the 
mouse T early α 
(TEA) promoter 

Responsible in part for 
MS 

Multiple sclerosis (MS) (Huseby et al., 
2012; Friese and 
Fugger, 2009) 

M21981 nested within 
individual introns 
of the IL2RA gene 

is upregulated with 
T-cell activation and is 
identified by genome- 
wide association studies 
(GWAS) to be 
susceptible to MS 

Multiple sclerosis (MS) (International 
Multiple Sclerosis 
Genetics et al., 
2007) 

Tmevpg1 is transcribed from a 
cluster of cytokine
genes, neighboring Ifng 

Is associated with a MS 
mouse model 

Multiple sclerosis (MS) (Vigneau et al., 
2003) 

H19 With IGF2 in the 
same cluster 

Deregulated H19 is 
associated with various 
diseases 

medulloblastomas, 
meningiomas and gliomas 

(Albrecht et al., 
1996; Yoon et al., 
2002; Muller et 
al., 2000; Berteaux 
et al., 2005) 

anti-NOS2A Antisense to 
NOS2A 

is evolved by duplication 
of the NOS2A gene 
followed by internal 
DNA inversion 

negatively regulated 
NOS2A, which is induced 
in human glioblastoma 

(Broholm et al., 
2003) 

AK042766 5kb from Meis1 are correlated with 
Meis1, which is lowered 
in expression in RLS 

Restless Legs Syndrome 
(RLS) 

(Ponjavic et al., 
2009) 

DISC2 Antisense to 
protein-coding 
gene DISC1 

Disruption of DISC 
genomic loci is linked 
to many psychiatric 
diseases 

schizophrenia, 
schizoaffective disorder, 
bipolar disorder, major 
depression, and autistic 
spectrum disorders 

(Chubb et al., 
2008; Millar et al., 
2000; Williams et 
al., 2009) 
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differentially expressed between ESCs and 
differentiated neurons are related to schizophrenia 
(SZ), bipolar disorder (BD) and even autism spectrum 
disorders (ASD) (Lin et al., 2011). We have 
summarized several lncRNAs involved in diseases of 
the CNS and brain in Table 2. 

The induced pluripotent stem cell technology, together 
with next generation sequencing (Stadtfeld and 
Hochedlinger, 2010) and even newer single-cell 
sequencing (Eberwine et al., 2014) is viable to 
generate tissue- and developmental stage-specific 
neural cells. These technologies, focusing on cell 
types, will be helpful to reveal more lncRNAs which 
act as critical regulators of normal human brain 
activity and associated disorders. 
 
3 Perspectives 
What we already know it that non-coding RNAs, 
particularly lncRNAs, have an important role in CNS 
development and brain functions. Large-scale 
predictions and compilation of brain subregion and 
CNS cell specific lncRNAs would aid determination 
of the actions of specific lncRNAs in brain and CNS 
development. In addition, comprehensive exploration 
of how expression specificity of lncRNAs is mediated 
during CNS and brain development can present the 
transcriptional patterns of lncRNA transcription and 
biological functions. 

For miRNAs may have a large number of targets for 
lncRNAs, it is still a problem to work out the 
miRNA-lncRNA networks in brain and CNS 
development, though related researches have been 
reported (Liu et al., 2013). The relationships of 
lncRNAs and human brain related diseases would 
require systematic exploration. It is meaningful to use 
lncRNAs as diagnostic and treating targets for 
neurological diseases. Furthermore, developing tools 
based on disease-related lncRNAs to produce animal 
models with permutated lncRNA expression patterns 
would help to comprehend the disease-causing reasons 
of lncRNA-driven human brain-related disorders. 

Our understandings towards genomic architecture 
have been dramatically updated, as the lncRNAs are 

found to be equally important in biological systems 
and in regulation of CNS with protein-coding genes. It 
is certain that exploring lncRNAs functions in neural 
development and disease conditions would be a 
research focus. lncRNAs are important for regulating 
CNS development and pathophysiology of CNS and 
brain. The regulatory functions involving regulatory, 
structural and catalytic functions for lncRNAs. By 
regulating genome-wide transcriptions, lncRNAs can 
dynamically mediate spatiotemporally the global gene 
networks. As the aforementioned brain region specific 
expression property for lncRNAs, transcriptomic and 
functional studies should be performed in different 
kinds of CNS cells and different subregions of brain, 
which would help explain whether lncRNAs have 
epigenetic and other functional roles. Considering 
GWAS has been performed for many CNS disorders, 
it is necessary and easy to investigate if the mined 
disorder related SNPs are related to lncRNAs, though 
it is difficult to predict the causality of variations in 
these lncRNA sequences (Mattick et al., 2009). 

In addition, therapeutic strategies including RNA 
interference (RNAi) technology and customized 
high-throughput methods are needed for targeting 
lncRNAs with aberrant expression in brain and CNS 
diseases. Taken together, we indicate that lncRNAs 
are important to modulate various brain related 
processes and are a major factor that is important to 
the brain development, which may be employed to 
develop meaningful diagnostic and treating 
approaches to treat brain and CNS related diseases. 
High-throughput RNA sequencing together with 
computational analysis would be useful to identify 
brain subregion and CNS-specific lncRNAs, together 
with their association with nearby protein-coding 
genes. Exploring how lncRNAs regulate gene 
transcription in cis or in trans is helpful to uncover 
novel non-coding RNA regulatory mechanisms in 
brain development and CNS differentiation. 
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