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Abstract Phenylalanine ammonia-lyase (PAL) is the first step key enzyme of the flavonoid biosynthesis pathway which played an 
essential role in plant anthocyanin accumulation. Five PAL family gene members were identified in the radish (Raphanus sativus L.) 
genome name RsPAL1~5. Specific primers were designed to amplify the open reading frame in red radish ‘Hongxin No.1’ and then 
sequenced. Real-time PCR was used to analysis the expression pattern of 5 RsPALs in four different tissues including leaf, petiole, 
taproot flesh and skin form five different color type radishes, including red skin and red flesh ‘Shaguan’ and ‘Hongxin No.1’, red 
skin and white flesh ‘Shaguan No.1’ and ‘Mantanghong’, white skin and white flesh ‘Chunbulao’. The results showed that the length 
of open read frame of RsPAL1~5 were 2 160, 2 166, 2 163, 2 124 and 2 109 bp encoding for 719, 721, 720, 707 and 702 amino acid 
residues respectively. Sequence alignment analysis showed that MIO motif (Ala-Gly-Ser) was conserved among the five RsPALs 
proteins. RsPAL1~4 were clustered with Arabidopsis AtPAL1 and AtPAL2, RsPAL5 was clustered with AtPAL4 in the phylogenetic 
tree. Real-time PCR results suggested that RsPAL4 was expressed only in the tissue accumulate anthocyanin, and the expression of 
RsPAL4 was significantly correlated with anthocyanin content. These results indicating that RsPAL4 may specifically involved in 
anthocyanin biosynthesis in radish. However, no obvious expression pattern of other RsPALs members was found in this study, 
suggesting that they may participate in other secondary metabolites biosynthesis of phenylpropane metabolism pathway. This study 
would provide scientific basis for further study on the function of radish PAL. 
Keywords Carmine radish; PAL; Anthocyanin; Gene expression 

Background 
Carmine radish (Raphanus sativus), also known as ‘Hongxin’ radish, is a local variety in the genus Raphanus of 
Brassicaceae. It is mainly abundant in Chongqing and Sichuan. Due to the accumulation of a large amount of 
anthocyanin in its fleshy roots, it presents dark red color from epidermis to interior. In recent ten years, the value 
of anthocyanin has been recognized, such as anti-oxidation, anti-inflammatory, anti-aging, and anti-cancer effects, 
as well as liver, cerebrovascular and vision protective effects (Xu et al., 2013). Anthocyanin is an important 
secondary metabolite in the flavonoid family and an important pigment in plant organs from red to purple. Its 
biosynthetic metabolic pathway has been clearly studied (Winkel-Shirley, 2001). PAL is the first step key enzyme 
and rate-limiting enzyme of the phenylpropane metabolism pathway, which is mainly responsible for catalyzing 
the deamination of L-Phenylalanine to trans-Cinnamic acid (Koukol et al., 1961). In addition to flavonoids, 
trans-Cinnamic acid is also involved in the synthesis of lignin and phytoalexin and other secondary metabolites. 
Therefore, PAL plays an essential role in plant growth and development and stress resistance (Hao et al., 2018). 

PAL genes in plants are generally composed of several family members. 4, 6 and 5 PAL family members were 
found in Cucumis melo, Citrullus lanatus, and Cucumis sativus, respectively (Sun et al., 2018). 9 members of the 
OsPALs family were also identified in Oryza sativa, and it was found that 8 of them were involved in the response 
to abiotic stress (Zeng et al., 2018). 8 members of MaPALs gene family were found in Musa nana. The expression 
of different members in different stages of fruit development and abiotic stress was significantly different, 
indicating that the biological functions of different members were also different (Yang et al., 2019). In addition, 
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members of the PAL family were identified from many horticultural plants, such as Vitis amurensis (Chen et al., 
2018), Punica granatum (Feng et al., 2018), Solanum tuberosum (Chang et al., 2018), and Luffa cylindrical (Zhu 
et al., 2018). 

Early studies have found that the synthesis of apple anthocyanin was closely related to PAL enzyme activity. The 
higher PAL enzyme activity, the better apple colouring (Zhou et al., 1997). PAL activity in the peel of Camellia 
oleifera was not only positively correlated with its resistance to Colletotrichum gloeosporioides, but also 
positively correlated with anthocyanin content in the peel (Yang et al., 2007). The accumulation of anthocyanin in 
radish seedlings was induced by UV treatment, and the PAL activity was also increased. And it was found that 
PAL activity was also positively correlated with anthocyanin content in different tissues and different 
developmental stages (Su et al., 2015; Zhang et al., 2019). However, there is no specific RsPAL family member 
involved in anthocyanin biosynthesis at present in radish at the whole gene level, although it has been reported 
that some RsPAL genes are not related to anthocyanin biosynthesis (Muleke et al., 2017). 

In this study, RsPALs gene family members were screened from RadishBase and their structures were analyzed. 
Using carmine radish 'Hongxin No.1' as material, the RsPALs gene was amplified and sequenced, and the 
expression of RsPALs members in different tissues of different color radish varieties was detected by Real-time 
fluorescence quantitative PCR. The correlation between the expression level of RsPALs gene and anthocyanin 
content was analyzed, and the key RsPALs gene involved in anthocyanin synthesis were identified, which 
provided a theoretical basis for radish variety improvement. 

1 Results and Analysis 
1.1 Anthocyanin content analysis in different color radish 
In this study, the anthocyanin contents in leaf, petiole, skin and flesh of different radish varieties were determined 
by pH-differential method (Figure 1). The fleshy roots of 'Shaguan' and 'Hongxin No.1' were red skin and red 
flesh, and the petioles were red, and there were a lot of anthocyanin accumulation. Among them, the average 
anthocyanin content in the skin of 'Shaguan' was 1.95 mg/g. The fleshy roots of red skin and white flesh 
'Mantanghong' and 'Shaguan No.1' were red skin and white flesh, and the petioles were red. There were a lot of 
anthocyanins in the taproot flesh and petioles of 'Shaguan No.1'. While the content of 'Mantanghong' was less. 
Anthocyanin accumulation was not detected in petiole, taproot flesh and flesh in ‘Chunbulao’. And no 
anthocyanin was found in the leaves of 5 radish varieties. 

Figure 1 Anthocyanin content in different tissues from different radish cultivars 
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1.2 Identification and cloning of PAL family members in radish 
According to the 4 reported AtPAL protein sequences of Arabidopsis thaliana, 5 members of radish RsPALs 
family with high homology were searched by Blastp software from RadishBase and further confirmed by 
BlastCCD analysis. The gene numbers were RSG04490.t1, RSG09128.t1, RSG33787.t1, RSG39829.t1 and 
RSG12055.t1, respectively, and named RsPAL1~5. cDNA of carmine radish ‘Hongxin No.1’ was used as the 
template, specific primers were designed to amplify and sequence the 5 genes, and open reading frames of RsPALs 
members in red radish were obtained, with the nucleotide sequences of 2 160, 2 166, 2 163, 2 124 and 2 109 bp, 
respectively. The results of sequence alignment showed that the similarity of amino acid sequences of RsPAL1 
and RsPAL2 was the highest (95.29%), followed by that of RsPAL3 and RsPAL4 (94.48%). In addition, the 
similarity of amino acid sequences between RsPAL1 and AtPAL1 was 93.93%. The similarity of amino acid 
sequences between RsPAL1 and AtPAL3, RsPAL4 was relatively low, which was 70.66% and 79.14%, 
respectively. The similarity of amino acid sequences between RsPAL5 and AtPAL4 was 90.54% (Figure 2). 
Sequence alignment results showed that the amino acid sequences of carmine radish RsPAL family members were 
higher than those of Arabidopsis thaliana AtPAL family members, indicating that 5 carmine radish RsPALs family 
members were successfully cloned. Multiple sequence alignment analysis showed that the PAL active site 
GTITASGDLV(L)PLSYIAG was found in all amino acid sequences of PAL gene members in Raphanus sativus 
and Arabidopsis thaliana, which contained highly conserved MIO electrophilic group composed of Ala-Ser-Gly 
(Figure 2). 

Figure 2 Amino acids sequences alignment of PAL family members from Arabidopsis and radish 
Note: In the red box is the active site of PAL protein; The red triangle showed the MIO domain 

1.3 Gene structure, protein structure and phylogenetic analysis of PAL family in carmine radish 
TBtools software was used to analyze the exons and introns of 5 RsPALs family members according to genome 
annotation information. It was found that RsPAL1, RsPAL3 and RsPAL4 had only 1 intron and 2 exons, while 
RsPAL2 had 3 introns and 4 exons, and RsPAL5 had 2 introns and 3 exons. By using MEME online software to 
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analyze the domains of the 5 RsPALs proteins, it was found that all the 5 members had the same 10 protein 
domains (Motif), and the structures of the 5 RsPALs proteins were generally consistent, indicating that the 
sequences among PAL members were conservative (Figure 3). 

Figure 3 Gene structure and conserved protein motifs analysis of radish RsPALs family members 
Note: A: RsPAL exon-intron analysis; B: Conserved protein motif predicted by MEME software; C: Sequences of 10 conserved 
motifs 

Neighbor-joining (NJ) phylogenetic tree was constructed to study the evolutionary relationship between RsPAL 
and PAL from other plants (Figure 4). It can be seen that PAL proteins from monocotyledonous Zea mays and 
Oryza sativa were clustered together, while PAL proteins from dicotyledonous plants Raphanus sativus, Glycine 
max, Arabidopsis thaliana, Lycopersicon esculentum and Nicotiana tabacum were clustered together (Figure 4). 
Among them, RsPAL3 and RsPAL4 were clustered with Arabidopsis thaliana AtPAL2, RsPAL1 and RsPAL2 
were clustered with Arabidopsis thaliana AtPAL1, RsPAL5 and AtPAL4 were clustered with AtPAL5. 

1.4 Expression analysis of RsPAL in different color radish 
To analyze the expression levels of these 5 members in the skin, flesh, petiole, and leaf in different color radish, 
including red skin and red flesh ‘Shaguan’ and ‘Hongxin No.1’, red skin and white flesh ‘Mantanghong’ and 
‘Shaguan No.1’, and white skin and white flesh ‘Chunbulao’. It can be seen that RsPAL1 has the highest 
expression level in the taproot flesh of different radish varieties, and also has a high expression level in the petiole 
(Figure 5). RsPAL2 was highly expressed in the skin of ‘Shaguan’ and in the flesh of ‘Hongxin No.1’. RsPAL3 was 
highly expressed in the skin and flesh of different varieties, and in the petiole of ‘Hongxin No.1’. RsPAL5 was 
highly expressed only in the flesh and petiole of ‘Shaguan’. RsPAL4 was only highly expressed in tissues with 
anthocyanin accumulation. The higher the anthocyanin content, the higher the expression of RsPAL4, indicating 
that RsPAL4 is closely related to anthocyanin synthesis. It was found that the expression level of RsPAL4 in 
different tissues of different varieties was positively correlated with the content of anthocyanins, and the 
correlation coefficient was R2=0.794. In addition, the expression of RsPAL1/2/3/5 in different tissues of different 
varieties was not significantly correlated with anthocyanin content. 
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Figure 4 Neighbor joining phylogenetic tree of PAL from radish and other plants 
Note: Red triangle reparent PAL from radish 

 
Figure 5 Expression of RsPALs in different tissues from different cultivars and the correlation between the expression of RsPAL4 and 
anthocyanin content 
Note: A~E: Expression of RsPAL1~RsPAL5 in in different tissues from different cultivars; F: Correlation between expression of 
RsPAL4 and anthocyanin content; The vertical bars represent the standard error of triplicate experiments 
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2 Discussion 
PAL is the first step key enzyme and rate-limiting enzyme of the phenylpropane metabolism pathway, which is a 
necessary pathway of secondary metabolism, affecting plant growth and development and response to stress. In 
this study, 5 RsPALs family members were identified in radish genome, and 1 more member than in Arabidopsis 
thaliana (Huang et al., 2010). Sequence alignment analysis showed that MIO motif (Ala-Gly-Ser) was conserved 
among the 5 RsPALs proteins. However, there were significant differences in protein conserved domains among 
the 8 MdPALs members in apple (Zhang et al., 2018). In evolution, RsPAL1 and RsPAL2 were clustered with 
Arabidopsis AtPAL1, RsPAL3 and RsPAL4 were clustered with Arabidopsis AtPAL2, and RsPAL5 was closely 
related to AtPAL3 and AtPAL4. In Arabidopsis thaliana, AtPAL4 is mainly involved in lignin synthesis, but its 
specific function is not clear because there is no phenotypic change after pal3 mutation alone. AtPAL1 and AtPAL2 
were mainly involved in flavonoid biosynthesis, and the Arabidopsis anthocyanin biosynthesis were inhibited after 
pal1 and pal2 double mutations (Olsen et al., 2008; Huang et al., 2010). 

A PAL member with a significant negative correlation with anthocyanin content was found in pomegranate 
(Punica granatum), suggesting that it may be involved in the browning process of pomegranate (Feng et al., 2018). 
In strawberry 'Camarosa', FaPAL6 gene expression was closely related to anthocyanin accumulation (Pombo et al., 
2011). In this study, the expression levels of 5 RsPALs family members in different tissues of different color radish 
were analyzed. The results showed that RsPAL4 gene was expressed in the tissues of anthocyanin accumulation 
and was positively correlated with anthocyanin content, with the correlation coefficient of R2=0.794, indicating 
that RsPAL4 was specifically involved in radish anthocyanin biosynthesis, which provided gene resources for 
radish breeding with high anthocyanin content. 

RsPAL1~3 and RsPAL5 did not show obvious regularity in the samples of this experiment, which may be due to 
their participation in other secondary metabolic pathways of radish. For example, RsPAL1 was relatively high 
expressed in the skin of different radish, suggesting that it may be involved in lignin synthesis. Because in general, 
the texture of radish skin is harder, and the content of lignin is higher (Li et al., 2008). 13 members of PAL gene 
family were identified in maize, 10 of which could be induced by sheath-blight fungus, and most of them were 
involved in the process of disease resistance (Deng et al., 2019). In addition, under various biological stress 
treatments, the expression of 6 PAL family members in Camellia sinensis was significantly increased (Xiong et al., 
2020). Therefore, further studies are needed to better understand the specific secondary metabolic pathways 
involved in these members, thereby affecting radish growth and stress response. 

3 Materials and Methods 
3.1 Experimental materials 
Different color radish used in this study include red skin and red flesh 'Shaguan' and 'Hongxin No.1', red skin and 
white flesh 'Shaguan No.1' and 'Mantanghong', and white skin and white flesh 'Chunbulao'. All experimental 
materials were planted at the experimental station of Yangtze Normal University (29°45′E, 107°15′N) in July 2016, 
and samples were collected in February 2017. The leaf, petiole, taproot flesh and flesh of different varieties were 
separated and cut into small pieces, and then immediately frozen in liquid nitrogen and stored in refrigerator 
(-80°C) for further use. 

3.2 Determination of anthocyanin content 
pH-differential method was used to determine the anthocyanin content according to the method of Wrolstad et al. 
(1982). 

3.3 Identification of RsPAL family members 
Amino acid sequences of 4 reported AtPALs members of Arabidopsis thaliana (AtPAL1, AT2G37040; AtPAL2, 
AT3G53260; AtPAL3, AT5G04230; AtPAL4, AT3G10340) were searched by Blastp software from RadishBase 
(http://www.nodai-genome-d.org), and then the NCBI Blast CD-search tool 
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) was used to detect whether the amino acid sequences 
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speculated by the candidate genes had a typical PAL protein domain (PF00221). The conserved protein domain 
analysis of RsPALs members was completed by the online tool MEME (http://meme-suite.org/tools/meme). The 
maximum number of conserved domains was set to 10, and the other parameters were the default parameters. The 
gene structure of RsPALs members was drawn according to the annotation information of radish genome by 
tbtools software (Chen et al., 2018). 

3.4 RNA extraction and cDNA synthesis 
The RNA of different varieties and different tissue samples were extracted by plant total RNA extraction kit 
(R4152) of Megan Biotechnology Co., Ltd. And the specific operation is shown in the instructions. The first 
strand cDNA was synthesized with total RNA as template, and reverse transcription was performed with HiScript 
III 1st Strand cDNA Synthesis Kit (+gDNA wiper) kit of Vazyme Biotech Co., Ltd. cDNA was synthesized 
according to the instructions of reverse transcriptase. 

3.5 Primer design, gene cloning and sanger sequencing 
Specific primers (Table 1) were designed based on the gene sequence information of the identified candidate 
RsPALs members to amplify the open reading frame in red radish ‘Hongxin No.1’ with high-fidelity enzyme 
(Takara PrimerSTAR Max DNA Polymerase). After electrophoretic detection, the amplified products were cut and 
recovered, and then the flat-end clone vector pTOPO-Blunt Simple (Aidlab Biotechnologies Co., Ltd.) was ligated 
and transformed into E. coli DH5α competent cells. After correcting monoclonal detection, the plasmid was 
extracted and sent to BGI for sequencing. 

Table 1 primers used in this study 
Primer name Primer sequence Usage 
RsPAL1-F ATGGAGATTAACGGATCATCACAC Gene amplication 
RsPAL1-R TTAGCATATTGGAATGGGAGCTCC 
RsPAL2-F ATGGAGGTTAACGGATCATCACACG 
RsPAL2-R CTCTTAACATATAGGAATGGGAGCTCC 
RsPAL3-F CACTAACTCAAAAACCAATGGATC 
RsPAL3-R CAGAGGAATGCTTCTCTTAGC 
RsPAL4-F GGTCATAAACCAATGGATCAGA 
RsPAL4-R CAGAGGAATGCTGTCTTAGCAT 
RsPAL5-F ATGGAGTTGTGCAAACAAAACAACAACC 
RsPAL5-R TCAACAGATCGGAACCGGAGCTC 
QRsPAL1-F GTCAACGGCGAGAGTGAGA Real-time PCR 
QRsPAL1-R TCATTAGGAAGCACCACCTTG 
QRsPAL2-F ATGGAGAGTATGGGCAAAGG 
QRsPAL2-R GCGGAGTGTGGTAATGTGTG 
QRsPAL3-F TGTCGCCCTTCACTAACTCA 
QRsPAL3-R CGCACAACAACATCGCTTC 
QRsPAL4-F AGGTTATTGTTGACCACGCT 
QRsPAL4-R CCGCATCCACTTCTTTAGG 
QRsPAL5-F CTGCCAAGCCATTGACCTAC 
QRsPAL5-R TAACACCCGTTTCGCTACCT 
QRsRPII-F ATCACGCTAAATGGTCTCCT Reference gene 
QRsRPII-R GCTGCTCTCAATCAAGTCAATC 

3.6 Sequence alignment and phylogenetic tree analysis 
The corresponding amino acid sequences were deduced by Translate Tool (http://cn.expasy.org/tools/dna.html) of 
ExPASy. The sequences were compared and analyzed by Clustal X software, and then the phylogenetic tree was 
constructed by MEGA5.0 to analyze the phylogenetic relationship (Tamura et al., 2011). 
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3.7 Fluorescence quantitative PCR 
Primer information (Table 1) was used to carry out Real-Time PCR reaction on Roche LC 480 II Real-Time PCR 
System. The reaction conditions were as follows: 95℃ for 15 s, 56℃ for 15 s, 72℃ for 35 s, 40 cycles. The 
specificity of primers was analyzed by melting curve after PCR cycle. 2-ΔΔCT method was used to perform data 
(Schmittgen and Livak, 2008), and calculate the relative expression of genes. All the above experiments were 
repeated 3 times. H2O was used as the negative control in each experiment, and RsRPII gene was selected as the 
internal reference gene (Lim et al., 2016). 
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