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Abstract With the advancement of genomics technology, whole genome prediction (GWP) and genome selection (GS) have
become important tools in plant and animal breeding. Genomic selection utilizes whole genome marker information to select target
traits through predictive models, improving breeding efficiency and accuracy. This study comprehensively reviews the application of
whole genome prediction technology in plant and animal breeding, with a focus on exploring its role in improving breeding
efficiency. Analyzing current genome selection models and methods, exploring the potential application of GS in improving
important agronomic and economic traits, as well as its prospects in different fields. Research has shown that GS technology has
greatly improved selection efficiency in multiple breeding projects, particularly in enhancing plant disease resistance and increasing
crop yield. In animal breeding, genome selection has been widely applied to improve the reproductive traits, health, and productivity
of livestock.
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1 Introduction

Genome-wide prediction and selection (GWPS) have revolutionized the fields of plant and animal breeding by
enabling the prediction of complex traits through the use of dense genomic markers. This approach involves the
implementation of whole-genome regression (WGR) models, where phenotypes are regressed on thousands of
markers concurrently, allowing for the accurate prediction of genetic values (Campos et al., 2013). The advent of
high-throughput sequencing technologies has facilitated the capture of both additive and non-additive genetic
effects, thereby enhancing the prediction of genetic gains from selection (He et al., 2023). Various statistical
models, such as genomic best linear unbiased predictor (G-BLUP) and Bayesian least absolute shrinkage and
selection operator (BLASSO), have been developed to address the high dimensionality and multicollinearity
challenges inherent in GWPS (Lima et al., 2019a). Additionally, non-parametric methods like Delta-p have been
proposed to further improve prediction accuracy (Lima et al., 2019b).

The integration of GWPS into modern breeding programs has significantly increased the efficiency and speed of
genetic evaluations, leading to higher genetic gains per unit of time (Alkimim et al., 2020). This is particularly
crucial for perennial species, where traditional breeding cycles are lengthy. By leveraging genomic estimated
breeding values (GEBVs), breeders can identify superior genotypes early in the breeding cycle, thus accelerating
the selection process (Lima et al., 2019a). The application of GWPS has shown promising results in various crops,
including cassava, Coffea canephora, and Asian rice, demonstrating its potential to enhance breeding outcomes
across diverse species (Lima et al., 2019a; Lima et al., 2019b; Alkimim et al., 2020). Moreover, the use of deep
learning models in GWPS has further improved prediction accuracy for complex traits, making it a valuable tool
in large-scale breeding programs (Sandhu et al., 2021).

This study provides a comprehensive overview of the current technologies and methods used in genome-wide
prediction and selection (GWPS) in plant and animal breeding. It summarizes the various statistical models and
methods employed in GWPS, including both parametric and non-parametric approaches, and evaluates their

effectiveness and efficiency in different breeding programs and species. The study also discusses the challenges
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and limitations associated with GWPS, such as high dimensionality, multicollinearity, and genotype-environment
interactions. Additionally, it highlights recent advancements and future directions in the field, including the
integration of deep learning models and digital breeding technologies.

2 Overview of Genome-Wide Prediction Techniques

2.1 Genomic selection (GS)

Genomic Selection (GS) has revolutionized the field of plant and animal breeding by enabling the rapid selection
of superior genotypes and accelerating the breeding cycle. Unlike traditional marker-assisted selection, which
focuses on identifying individual loci associated with traits, GS uses all marker data as predictors of performance,
leading to more accurate predictions (Jannink et al., 2010; Crossa et al., 2017). This approach is particularly
beneficial for complex traits controlled by many genes with small effects, which traditional methods struggle to
address effectively (Meuwissen et al., 2016; Varshney et al., 2017). The integration of GS into breeding programs
has shown tangible genetic gains, as evidenced by its application in maize breeding, where significant
improvements have been observed (Crossa et al., 2017).

The success of GS hinges on its ability to incorporate all marker information into the prediction model, thereby
avoiding biased marker effect estimates and capturing more of the variation due to small-effect quantitative trait
loci (QTL). This comprehensive approach allows for the prediction of breeding values of lines in a population by
analyzing their phenotypes and high-density marker scores. The accuracy of these predictions has been
demonstrated in both simulation and empirical studies, with correlations between true breeding value and genomic
estimated breeding value reaching levels as high as 0.85 for polygenic low heritability traits (Varshney et al.,
2017). This level of accuracy is sufficient to consider selecting for agronomic performance using marker
information alone, substantially accelerating the breeding cycle and enhancing gains per unit time.

2.2 Genomic prediction models

Genomic prediction models are central to the implementation of GS, as they estimate the effects of markers across
the entire genome on the target population based on a prediction model developed in the training population.
These models are designed to capture small QTL effects that are often ignored in traditional association analysis,
thereby providing a more comprehensive understanding of the genetic architecture of complex traits (Desta and
Ortiz, 2014). Various genomic prediction models have been proposed, each with its strengths and limitations. For
instance, the Bayesian Lasso, weighted Bayesian shrinkage regression (wBSR), and random forest (RF) are
among the models that have shown promise in terms of predictive accuracy and computational efficiency (Heslot
etal., 2012).

The choice of genomic prediction model can significantly impact the accuracy of predictions and the genetic gain
from selection. Comparative studies have shown that while many models achieve similar levels of accuracy, they
differ in their susceptibility to overfitting, computation time, and the distribution of marker effect estimates
(Heslot et al., 2012). Additionally, the integration of multi-trait and multi-environment models, high-throughput
phenotyping, and deep learning approaches can further enhance the accuracy and efficiency of genomic
predictions (Merrick et al., 2022). These advancements highlight the importance of continuous research and
optimization of genomic prediction models to maximize their potential in breeding programs.

2.3 Machine learning and artificial intelligence applications

The application of machine learning (ML) and artificial intelligence (Al) in genomic prediction represents a
significant advancement in the field of breeding. Machine learning methods, such as random forest and deep
learning, have been shown to capture non-additive effects and improve the accuracy of genomic predictions.
These methods can handle large datasets with complex interactions, making them well-suited for genomic
prediction tasks. For example, random forest, a machine learning method, has been found to be effective in
capturing non-additive effects, which are often missed by traditional linear models (Heslot et al., 2012).

The integration of ML and Al into genomic prediction models offers several advantages, including the ability to
analyze large and complex datasets, improve prediction accuracy, and reduce computation time. High-throughput
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phenotyping and deep learning approaches can leverage the large amount of genomic and phenotypic data
collected across different growing seasons and environments to increase heritability estimates, selection intensity,
and selection accuracy (Merrick et al., 2022).

3 Data Requirements and Management

3.1 High-throughput genotyping

High-throughput genotyping is a cornerstone of modern plant and animal breeding programs, enabling the
identification and utilization of genetic variation on a genome-wide scale. Single Nucleotide Polymorphisms
(SNPs) are the most commonly used markers due to their abundance and the development of high-throughput
genotyping technologies such as SNP arrays and whole-genome sequencing (WGS). SNP arrays, like the
TaBW280K developed for wheat, allow for efficient genotyping of large populations, providing valuable data for
diversity analyses and breeding programs (Rimbert et al., 2018). Similarly, genotyping-by-sequencing (GBS) has
emerged as a cost-effective alternative, combining marker discovery and genotyping in a single step, which is
particularly useful for species with large genomes (He et al., 2014; Gorjanc et al., 2015).

The effectiveness of genomic selection (GS) is highly dependent on the density and coverage of genetic markers.
High-density SNP arrays and WGS provide comprehensive coverage of the genome, capturing a wide range of
genetic variation. For instance, the TaBW280K array for wheat includes 280,226 SNPs, covering both genic and
intergenic regions, which enhances the resolution of genetic mapping and the accuracy of GS models (Rimbert et
al., 2018). In livestock, GBS has been shown to provide comparable accuracy to SNP arrays when a sufficient
number of markers and appropriate sequencing depth are used (Gorjanc et al., 2015). The choice between SNP
arrays and WGS often depends on the specific requirements of the breeding program, including the species,
genome size, and available resources (Bhat et al., 2016; Moraes et al., 2018).

Cost and efficiency are critical factors in the selection of genotyping methods. SNP arrays, while having a high
initial development cost, offer a cost-effective solution for routine genotyping once established. For example, the
development of species-specific SNP arrays can be expensive, but they provide high-throughput and reliable
genotyping for large breeding populations (Grattapaglia et al., 2011; Moraes et al., 2018). On the other hand, GBS
and other NGS-based methods offer flexibility and lower initial costs, making them suitable for species where
SNP arrays are not available or economically feasible (He et al., 2014; Gorjanc et al., 2015). The continuous
decline in sequencing costs is expected to further enhance the feasibility of WGS for GS in the near future (Bhat
etal., 2016).

3.2 Phenotypic data collection

Accurate phenotypic data is essential for the success of GS. High-throughput phenotyping technologies are being
developed to complement genotyping efforts, enabling the collection of large-scale, precise phenotypic data.
These technologies include automated imaging systems, remote sensing, and various sensor-based methods that
can capture complex traits in real-time. The integration of high-throughput phenotyping with genotyping data is
crucial for improving the accuracy of genomic predictions and achieving significant genetic gains in breeding
programs (Figure 1) (Bhat et al., 2016; Wang et al., 2016).

Bhat et al. (2016) found that combining high-throughput phenotyping (HTP) with genomic estimated breeding
values (GEBV) enables precise prediction of an individual’s breeding value, thereby accelerating the
identification, testing, and promotion of superior genotypes. NGS and HTP technologies significantly enhance the
efficiency and accuracy of genomic selection by increasing the coverage of genotype data and the precision of
phenotype data collection, speeding up the breeding process for superior varieties. The application of these
technologies reduces costs, optimizes breeding resources, and provides powerful tools for crop improvement.

3.3 Data integration and management

The integration and management of large-scale genotypic and phenotypic data pose significant challenges.
Effective data management systems are required to handle the vast amounts of data generated by high-throughput
genotyping and phenotyping technologies. These systems must support data storage, retrieval, and analysis,
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facilitating the seamless integration of diverse data types. Bioinformatics pipelines are essential for processing and
interpreting GBS datasets, enabling the identification of genetic markers and the development of GS models
(Ganal et al., 2014; He et al., 2014). Additionally, databases that compile marker data from multiple genotyping
experiments can streamline downstream data processing and enhance the utility of genotyping data for both
scientific research and breeding applications (Ganal et al., 2014).
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Figure 1 The role of NGS-Based marker technology and high-throughput phenotyping in genomic selection (Adopted from Bhat et
al., 2016)

4 Statistical Methods and Models

4.1 Best linear unbiased prediction (BLUP)

Best Linear Unbiased Prediction (BLUP) is a widely used statistical method for estimating random effects in
mixed models, particularly in the context of animal breeding. Originally developed for estimating breeding values,
BLUP has been adapted for various applications, including plant breeding and variety testing. In plant breeding,
BLUP has been employed to model and exploit genetic correlations among relatives using pedigree information,
and to handle genotype-by-environment interactions through flexible variance-covariance structures. This method
has demonstrated good predictive accuracy compared to other procedures, making it a valuable tool for genetic
evaluation in both plants and animals (Piepho et al., 2008).

In animal breeding, BLUP has been adapted to address specific challenges such as the inclusion of dam effects in
models for polytocous species like swine and poultry. This adaptation involves hierarchical models that account
for sires, dams within sires, individuals within full-sib families, and records within individuals. The development
of alternative computing algorithms has facilitated the timely genetic evaluation of large populations, ensuring
that BLUP remains a robust and efficient method for genetic prediction. Additionally, the integration of genomic
information into BLUP models, such as the use of trait-specific marker-derived relationship matrices, has further
enhanced the accuracy of genomic breeding value predictions (Bauer et al., 2006; Muir, 2007; Zhang et al., 2010).

4.2 Bayesian methods
Bayesian methods have gained prominence in genomic prediction due to their flexibility and ability to incorporate
prior information. These methods, such as BayesA, BayesB, and BayesC, allow for the estimation of marker
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effects by treating them as random variables with specific prior distributions. This approach enables the modeling
of complex genetic architectures and the incorporation of uncertainty in parameter estimates. Bayesian methods
have shown superior performance in predicting breeding values, particularly for traits with low heritability, by
effectively capturing the underlying genetic variance (Muir, 2007; Zhang et al., 2010).

One of the key advantages of Bayesian methods is their ability to handle large-scale genomic data and provide
more accurate predictions compared to traditional methods. For instance, the BayesB method, which assigns a
mixture of distributions to marker effects, has been shown to outperform other BLUP-based methods in terms of
prediction accuracy. This is particularly evident in scenarios where the genetic architecture of the trait involves a
few large-effect loci and many small-effect loci. The flexibility of Bayesian methods in accommodating different
genetic architectures makes them a powerful tool for genomic selection in both plant and animal breeding (Muir,
2007; Zhang et al., 2010).

4.3 Machine learning algorithms

Machine learning algorithms have emerged as powerful tools for genomic prediction and selection, offering the
ability to model complex, non-linear relationships between genotypes and phenotypes. Techniques such as
random forests, support vector machines, and neural networks have been applied to genomic data to improve the
accuracy of breeding value predictions. These algorithms can handle high-dimensional data and capture
interactions among markers, making them suitable for predicting complex traits influenced by multiple genetic
and environmental factors (Muir, 2007; Zhang et al., 2010)

The application of machine learning in genomic selection has shown promising results, particularly in enhancing
prediction accuracy and selection response. For example, genomic best linear unbiased prediction (G-BLUP), a
ridge-regression type method, has been effectively combined with machine learning techniques to improve the
prediction of complex human traits. Studies have demonstrated that machine learning algorithms can outperform
traditional BLUP methods, especially when dealing with large datasets and traits with low heritability. The
integration of machine learning into genomic selection frameworks holds great potential for advancing breeding
programs and achieving higher genetic gains (Muir, 2007; Zhang et al., 2010; Campos et al., 2013).

5 Applications in Plant Breeding

5.1 Genomic selection for crop improvement

Genomic selection (GS) has revolutionized crop improvement by enabling the prediction of breeding values using
genome-wide markers. This method leverages high-density marker scores to predict the genetic potential of
untested populations, thus accelerating the breeding cycle and enhancing genetic gains (Jannink et al., 2010; Desta
and Ortiz, 2014; Varshney et al., 2017). Unlike traditional marker-assisted selection, which focuses on individual
loci, GS incorporates all marker data, capturing the effects of small quantitative trait loci (QTL) and providing
more accurate predictions (Desta and Ortiz, 2014; Varshney et al., 2017). Studies have shown that GS can achieve
high correlation levels between true breeding values and genomic estimated breeding values, even for traits with
low heritability, making it a powerful tool for selecting agronomic performance traits (Varshney et al., 2017). The
integration of GS with advanced technologies such as high-throughput genotyping and phenotyping further
enhances its efficiency and application in varietal development programs (Krishnappa et al., 2021).

5.2 Enhancing disease resistance

The application of GS in enhancing disease resistance in crops has shown significant promise. By using
genome-wide markers, GS can predict the genetic potential for disease resistance traits more accurately than
traditional methods (Crossa et al., 2011; Wang et al., 2018). For instance, in maize, GS has been used to improve
resistance to diseases such as Exserohilum turcicum and Cercospora zeae-maydis, demonstrating the method's
effectiveness in real-world breeding programs (Crossa et al., 2011). The ability of GS to account for genotype x
environment interactions further enhances its utility in breeding for disease resistance, as it allows for the
selection of genotypes that perform well across different environmental conditions (Crossa et al., 2011; Crossa et
al., 2017). This holistic approach to selection ensures that disease-resistant traits are effectively incorporated into
new crop varieties, contributing to sustainable agricultural practices.
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5.3 Yield and quality traits

Improving yield and quality traits in crops is a primary goal of plant breeding, and GS has proven to be a valuable
tool in this regard. By utilizing genome-wide markers, GS can predict complex traits influenced by multiple genes,
such as yield and quality, with greater accuracy (Jannink et al., 2010; Wang et al., 2018). The method's ability to
capture the effects of small QTL and incorporate them into prediction models allows for more comprehensive
selection decisions (Desta and Ortiz, 2014; Wang et al., 2018). Empirical studies have shown that GS can lead to
significant genetic gains in yield and quality traits, making it a critical component of modern breeding programs
(Jannink et al., 2010; Crossa et al., 2017). Additionally, the integration of multi-trait genomic selection methods,
which optimize selection decisions across multiple traits, further enhances the effectiveness of GS in improving
yield and quality (Figure 2) (Moeinizade et al., 2020). This multi-objective optimization approach ensures that
breeding programs can achieve balanced improvements in various economically important traits, ultimately
leading to the development of superior crop varieties.
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Figure 2 Comparison of multi-trait linear weighted selection (MT-LAS), single-trait linear weighted selection (ST-LAS), and Index
selection methods (Adopted from Moeinizade et al., 2020)

Image Caption: This figure illustrates the performance of MT-LAS, ST-LAS, and different index selection methods over 10
generations in a simulation; Each small box represents the distribution of genetic estimated breeding values (GEBVs) for two traits
across each generation, with the gray bars indicating the constraint boundaries; The three numbers in each box represent the standard
deviations (SD) of trait 1 and trait 2, followed by the correlation between the two traits (Adopted from Moeinizade et al., 2020)

Moeinizade et al. (2020) studied the genetic performance and correlations of traits in multi-trait selection
(MT-LAS) and single-trait selection (ST-LAS). Under genomic selection (GS), selecting multiple traits
simultaneously (such as yield and quality) allows for better balancing of improvement goals and more effective
selection of target traits. Index selection, on the other hand, influences the direction of selection through different
weighting coefficients. Overall, MT-LAS performed excellently in balancing improvements across multiple traits,
demonstrating significant potential for applications in improving crop yield and quality.

6 Applications in Animal Breeding

6.1. Genetic improvement of livestock

Genomic selection (GS) has revolutionized the genetic improvement of livestock by enabling more accurate
predictions of breeding values. Traditional marker-assisted selection (MAS) was limited by the complexity of
traits in livestock, which are influenced by thousands of genes with small effects. GS overcomes this by
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considering all markers linked to genes affecting the trait, thus improving the accuracy of selection. The
development of high-throughput genotyping technologies and the discovery of numerous single nucleotide
polymorphisms (SNPs) have facilitated the widespread adoption of GS in livestock breeding programs
(Meuwissen et al., 2016). This approach has been particularly impactful in dairy and beef cattle, pigs, and poultry,
where it has significantly enhanced genetic gain by reducing the generation interval and increasing selection
accuracy (Ibtisham et al., 2017).

6.2 Selection for reproductive traits

Reproductive traits are crucial for the efficiency and profitability of livestock production. Genomic selection has
shown promise in improving these traits by enabling early and accurate prediction of breeding values. By using
genetic markers spread across the entire genome, GS can capture the effects of multiple quantitative trait loci
(QTL) associated with reproductive performance (Ibtisham et al., 2017). This allows for the selection of animals
with superior reproductive traits at a younger age, thereby accelerating genetic progress. The integration of GS
with other breeding tools and platforms can further enhance the selection process, making it more efficient and
cost-effective (Xu et al., 2019).

6.3 Health and productivity enhancements

Improving the health and productivity of livestock is a primary goal of breeding programs. Genomic selection has
been instrumental in achieving these objectives by providing a more precise estimation of genetic merit for health
and productivity traits. Studies have shown that GS can significantly enhance the genetic gain for traits such as
disease resistance, growth rate, and milk production (Ibtisham et al., 2017). The use of whole-genome regression
models, which regress phenotypes on thousands of markers simultaneously, has been particularly effective in
predicting complex traits (Campos et al., 2013). Additionally, the detection of selection signatures in livestock
genomes has provided insights into the domestication and evolutionary processes, helping identify candidate
genes associated with economically important traits (Saravanan et al., 2020). This knowledge can be leveraged to
develop breeding strategies that improve the overall health and productivity of livestock populations.

7 Challenges and Limitations

7.1 Genotype-environment interactions

Genotype-environment (GXE) interactions present a significant challenge in genomic selection for both plant and
animal breeding. These interactions can complicate the prediction of phenotypic traits because the performance of
genotypes can vary across different environments. Several studies have highlighted the importance of
incorporating GxE interactions into genomic prediction models to improve accuracy. For instance, models that
account for GXE interactions have shown superior predictive ability compared to single-environment models
(Malosetti et al, 2016; Cuevas et al., 2016; Oakey et al., 2016). Additionally, the use of environmental covariables
has been found to be beneficial in predicting phenotypes in untested environments, further emphasizing the need
to consider GXE interactions in genomic selection (Malosetti et al, 2016). However, the complexity of these
models and the computational resources required to implement them can be substantial, posing a significant
limitation (Granato et al., 2018; Jighly et al., 2021).

7.2 Computational and resource constraints

The implementation of genomic selection models, especially those incorporating GXE interactions, often requires
significant computational resources. The scale of multi-environment trials is increasing, which in turn increases
the computational challenges associated with genomic selection (Granato et al., 2018). For example, Bayesian
models that account for GXE interactions can be computationally intensive, although recent advancements have
led to more efficient algorithms and software packages that reduce computational time (Cuevas et al., 2016;
Granato et al., 2018). Despite these advancements, the need for high computational power and extensive data
storage remains a barrier, particularly for smaller breeding programs with limited resources (Lado et al., 2016;
Jighly et al., 2021). Additionally, the integration of high-throughput sequencing data and the need to process large
datasets further exacerbate these computational challenges (He et al., 2023).
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7.3 Ethical and regulatory issues

Ethical and regulatory issues also pose challenges in the application of genomic selection in breeding programs.
The use of genomic data raises concerns about data privacy and the potential misuse of genetic information.
Regulatory frameworks governing the use of genomic data in breeding programs vary across regions, which can
complicate international collaborations and the sharing of genetic resources (Crossa et al., 2017). Moreover, the
ethical implications of manipulating genetic material, particularly in animal breeding, require careful
consideration to ensure that breeding practices are conducted responsibly and sustainably (He et al., 2023). The
development of clear guidelines and regulations is essential to address these ethical and regulatory challenges and
to ensure the responsible use of genomic selection technologies in breeding programs.
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