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Abstract Biological networks are important tools for understanding the complexity and functionality of biological systems, and
their dynamic analysis can reveal the dynamic behavior of biological processes. However, the high complexity and diversity of
biological networks pose urgent challenges for research, requiring the development and application of advanced computational
methods. This study reviews the different types of biological networks and their functional roles in biology, and explores in detail
network dynamics calculation methods including graph theory, agent-based modeling, differential equations, etc. In addition, we also
focus on dynamic modeling of gene regulatory networks, protein-protein interaction networks, and metabolic networks, analyzing the
applications and limitations of these methods in practical biological systems. In order to provide a comprehensive reference for
researchers in the field of biological network dynamics.
Keywords Biological networks; Network dynamics; Computational methods; Gene regulatory networks; Protein-protein
interaction networks

1 Introduction
Biological networks, encompassing gene regulatory networks (GRNs), protein-protein interaction networks, and
metabolic pathways, are fundamental to understanding the complex interactions that govern cellular processes.
These networks are integral to various biological functions, including cell differentiation, metabolism, and signal
transduction (Karlebach and Shamir, 2008; Wang and Gao, 2010). The advent of high-throughput technologies
and computational methods has enabled the detailed mapping and analysis of these networks, providing insights
into their structure and function (Covert et al., 2004; Glass et al., 2013). The integration of experimental data with
computational models has become essential for elucidating the intricate dynamics of biological systems (Mangan
et al., 2016; Manipur et al., 2020).

Understanding the dynamics of biological networks is crucial for several reasons. Firstly, it allows researchers to
predict the behavior of these networks under different conditions, which is vital for identifying the mechanisms
underlying diseases caused by dysregulated cellular processes (Liu et al., 2020; Jolly and Roy, 2022). Secondly,
dynamic models can facilitate the development of biotechnological applications by providing faster and more
cost-effective alternatives to experimental approaches (Liu et al., 2020). Moreover, the study of network dynamics
can reveal emergent properties and interactions that are not apparent from static network analyses, thereby
offering a more comprehensive understanding of biological systems (Boccaletti et al., 2006; Paulevé et al., 2020).
The application of control theory and other mathematical frameworks to these networks has further enhanced our
ability to analyze and manipulate their behavior (Jolly and Roy, 2022).

This study attempts to emphasize the methods used, the challenges encountered, and the progress made in this
field. Specifically studying various modeling techniques, including Boolean modeling, differential equations, and
data-driven methods, as well as their applications in understanding gene regulatory networks, metabolic pathways,
and other biological systems. We will discuss the integration of high-throughput data and computational models,
as well as the impact of these methods on future research and biotechnology innovation. We hope to provide
valuable resources for researchers and practitioners interested in dynamic modeling of biological networks.
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2 Overview of Biological Networks
Biological networks are intricate systems that represent the interactions among various biological entities, such as
genes, proteins, and metabolites. These networks are essential for understanding the complex relationships and
dynamics within biological systems. Advances in network science and high-throughput biomedical technologies
have significantly enhanced our ability to study these networks, providing deeper insights into their structure and
function (Bocci et al., 2023).

2.1 Types of biological networks
Biological networks can be categorized into several types based on the nature of the interactions they represent.
Common types include genetic regulatory networks, protein-protein interaction networks, metabolic networks,
and signaling networks. Genetic regulatory networks depict the interactions between genes and their regulatory
elements, while protein-protein interaction networks illustrate the physical interactions between proteins.
Metabolic networks map the biochemical reactions within a cell, and signaling networks represent the pathways
through which cells respond to external stimuli (Koutrouli et al., 2020; Jolly and Roy, 2022). Each type of
network provides a unique perspective on the biological processes and helps in understanding the underlying
mechanisms of cellular functions.

2.2 Structural properties of networks
The structural properties of biological networks are crucial for understanding their behavior and functionality. Key
properties include network topology, degree distribution, clustering coefficient, and path length. Network
topology refers to the overall arrangement of nodes and edges, which can be characterized by patterns such as
scale-free or small-world structures. Degree distribution describes the number of connections each node has, often
following a power-law distribution in biological networks. The clustering coefficient measures the tendency of
nodes to form tightly knit groups, while path length indicates the average number of steps required to traverse the
network (Koutrouli et al., 2020; Paulevé et al., 2020). These properties help in identifying critical nodes and
understanding the robustness and efficiency of biological networks.

2.3 Functional roles of networks in biology
Biological networks play vital roles in various biological processes and functions. They are involved in cellular
communication, metabolic regulation, and the coordination of complex biological responses. For instance, genetic
regulatory networks control gene expression patterns, which are essential for cellular differentiation and
development. Protein-protein interaction networks facilitate the formation of protein complexes that carry out
specific cellular functions. Metabolic networks ensure the efficient flow of metabolites through biochemical
pathways, supporting cellular energy production and biosynthesis. Signaling networks enable cells to perceive and
respond to environmental changes, maintaining homeostasis and facilitating adaptation (Mangan et al., 2017).
Understanding these functional roles is critical for deciphering the complexities of biological systems and
developing therapeutic strategies for diseases.

3 Computational Approaches to Network Dynamics
3.1 Graph-theoretical methods
Graph-theoretical methods are pivotal in analyzing biological networks due to their ability to represent complex
systems as interconnected nodes and edges. These methods facilitate the understanding of the structural properties
and functional dynamics of biological systems. For instance, graph theory can be used to analyze molecular
structures in microbiology, where cells, genes, or proteins are represented as vertices, and their interactions as
edges. This approach allows for the computation of topological indices, which can reveal significant biological
activities and properties (Pavlopoulos et al., 2011; Gao et al., 2017). Additionally, graph-based methods can
characterize global and local structural properties of cellular networks, detect motifs or clusters involved in
common biological functions, and integrate large-scale experimental data for comprehensive network inference
(Aittokallio and Schwikowski, 2006).
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3.2 Agent-based modeling
3.2.1 Principles and applications
Agent-based modeling (ABM) is a flexible computational approach used to simulate the interactions of individual
agents within a system, capturing the emergent behavior of complex biological networks. ABMs are particularly
useful in fields ranging from molecular biology to ecology, where they can model phenomena such as cell
migration, molecular dynamics, and disease spread (Hinkelmann et al., 2010; Nardini et al., 2020). These models
are typically specified through protocols like the ODD protocol, which standardizes model descriptions and
facilitates their analysis (Grob et al., 2019).

3.2.2 Strengths and limitations
The strengths of ABM include its ability to model heterogeneous agents and capture stochastic behaviors, making
it suitable for simulating real-world biological systems. However, ABMs often require extensive computational
resources due to their complexity and the need for numerous simulations to explore parameter spaces. This
computational demand can be mitigated by using neural networks to emulate ABMs, significantly improving
efficiency while maintaining accuracy (Wang et al., 2019). Despite these advancements, challenges remain in
accurately predicting model dynamics in certain parameter regimes, which can sometimes be addressed by
integrating differential equation models learned from ABM simulations (Nardini et al., 2020).

3.2.3 Case studies in biological systems
Several case studies highlight the application of ABM in biological systems. For example, ABMs have been used
to model cell biology experiments, such as birth-death-migration processes, and epidemiological models like the
susceptible-infected-recovered (SIR) model. These studies demonstrate the utility of ABM in predicting system
dynamics and exploring biological phenomena. Additionally, the integration of ABM with other computational
frameworks, such as equation learning, has shown promise in enhancing the predictive power and applicability of
these models in various biological contexts.

3.3 Differential equation-based approaches
Differential equation-based approaches are fundamental in modeling the dynamic behavior of biological networks.
These methods use mathematical equations to describe the rate of change of system variables over time, providing
insights into the underlying mechanisms of biological processes. For instance, control-theoretic approaches using
differential equations have been applied to drug delivery systems, while other methods have been used to infer
biochemical network dynamics and predict system behavior under different conditions (Mochizuki, 2016).
Additionally, multi-scale probabilistic models, such as ProbRules, combine differential equations with logical
rules to represent network dynamics across different scales, offering robust predictions of gene expression and
molecular interactions (Grob et al., 2019). These approaches are crucial for understanding the complex
interactions within biological networks and developing effective interventions.

4 Dynamic Modeling of Gene Regulatory Networks
4.1 Boolean networks
4.1.1 Basic concepts and applications
Boolean networks are a fundamental approach to modeling gene regulatory networks (GRNs) due to their
simplicity and intuitive nature. They represent genes as nodes and regulatory interactions as edges, with each gene
being in one of two states: active or inactive. This binary representation allows for the construction of dynamic
models that can predict the behavior of genetic networks under various conditions. Boolean networks are
particularly useful for understanding the overall structure and dynamics of GRNs, making them a popular choice
for initial modeling efforts (Saadat and Albert, 2013; Tyson et al., 2019).

4.1.2 Modeling gene regulation
The process of modeling gene regulation using Boolean networks involves several key steps. First, experimental
data is used to infer the network structure, identifying which genes regulate which others. This is followed by the
application of graph-theoretical measures to analyze the network's properties. The network is then converted into a
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dynamic model that can simulate the behavior of the system over time. This approach allows researchers to make
predictions about gene expression patterns and identify potential targets for therapeutic intervention (Murrugarra
and Aguilar, 2019).

4.1.3 Examples in genetic networks
Boolean networks have been successfully applied to various genetic networks, providing insights into complex
biological processes. For instance, the segment polarity gene network in Drosophila melanogaster has been
modeled using Boolean networks to understand the regulatory mechanisms involved in embryonic development
(Saadat and Albert, 2013). Additionally, Boolean networks have been used to study cell differentiation and
functional states, highlighting their utility in capturing the dynamic behavior of GRNs. These models have also
been extended to incorporate stochastic elements, allowing for the simulation of gene expression variability
observed in biological systems (Murrugarra and Aguilar, 2019).

4.2 Bayesian networks
Bayesian networks offer a probabilistic approach to modeling gene regulatory networks, capturing the inherent
uncertainty and variability in gene expression. These models use conditional probabilities to represent the
relationships between genes, allowing for the integration of diverse data types and the inference of regulatory
interactions. Bayesian networks are particularly useful for identifying causal relationships and predicting the
effects of perturbations in the network (Grob et al., 2019).

4.3 Stochastic models
Stochastic models are essential for capturing the random nature of gene regulatory processes, which arise from the
small number of molecules involved and the stochasticity of their interactions. These models use mathematical
frameworks such as the chemical master equation and the stochastic simulation algorithm (SSA) to simulate the
behavior of GRNs under different conditions. Stochastic models provide a more accurate representation of gene
expression dynamics, accounting for the noise and variability observed in experimental data (Liang and Han, 2012;
Murrugarra and Aguilar, 2019). They are particularly useful for studying systems with significant molecular noise
and for developing therapeutic strategies that target specific regulatory pathways.

5 Modeling Protein-Protein Interaction Networks
5.1 Structural and functional analysis
Protein-protein interaction (PPI) networks are fundamental to understanding cellular processes and biological
functions. Structural and functional analysis of these networks involves deciphering the atomic details of protein
binding interfaces and their dynamic interactions within the cellular environment. Computational models, such as
the multiscale framework integrating high-resolution structural information and simplified representations for
long-time-scale dynamics, have proven effective in simulating these interactions and unraveling their complexities
(Wang et al., 2018). Additionally, network-based modeling and coevolutionary analysis have enriched our
understanding of protein dynamics and allosteric regulation, providing insights into the molecular mechanisms
underlying protein functions and interactions (Liang et al., 2020).

5.2 Dynamic simulations
Dynamic simulations, particularly molecular dynamics (MD) simulations, play a crucial role in studying the
behavior of proteins and their interactions over time. These simulations capture the full atomic detail and temporal
resolution of biomolecular processes, offering valuable insights into protein dynamics, structure-function
relationships, and interaction mechanisms (Hollingsworth and Dror, 2018). Enhanced sampling MD approaches,
combined with regular MD methods, assist in steering structure-based drug discovery by elucidating drug-protein
interactions and binding mechanisms (Kalyaanamoorthy and Chen, 2014). Tools like SenseNet further analyze
protein structure networks from MD simulations, predicting allosteric residues and their roles in signal
transduction (Schneider and Antes, 2021).

5.3 Applications in drug discovery
The application of computational approaches to PPI networks has significant implications for drug discovery. MD
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simulations have been widely used to investigate pathogenic mechanisms, virtual screening, and drug resistance
mechanisms, providing essential information that guides the drug discovery and design process (Liu et al., 2018).
Deep learning methods, such as graph neural networks (GNNs), have also emerged as powerful tools for
predicting protein functions and interactions (Figure 1), facilitating in silico drug discovery and development
(Muzio et al., 2020). These computational methods enable the identification of candidate disease genes or drug
targets, which can be further validated experimentally, thus accelerating the drug discovery pipeline (Liang and
Kelemen, 2018).

Figure 1 On the GCN layer of the k-layer GCN (Aodpted from Muzio et al., 2020)
Image caption: Each layer of the GCN is aggregated on each node's neighborhood using the node representation of the previous layer
in the network. The aggregates in each layer then pass through an activation function (in this case, ReLU) before moving on to the
next layer. The network can be used to generate a variety of different outputs: to predict new edges in the input network (link
prediction), to classify individual nodes in the input graph (node classification), or to classify the entire input graph (graph
classification) (Aodpted from Muzio et al., 2020)

6 Metabolic Network Modeling
6.1 Flux balance analysis
Flux Balance Analysis (FBA) is a widely used computational method for predicting the flow of metabolites
through a metabolic network. It relies on the principle of mass conservation and uses a stoichiometric matrix
along with a biologically relevant objective function, such as biomass production or ATP generation, to identify
optimal reaction flux distributions (Vidal-Limon et al., 2022). FBA has been instrumental in analyzing
genome-scale reconstructions of various organisms and has applications in metabolic engineering and drug target
identification (Sen, 2022). However, FBA has limitations, such as its inability to predict intracellular fluxes under
all environmental conditions, necessitating the development of alternative strategies (Megchelenbrink et al.,
2015).

6.2 Constraint-based optimization
Constraint-based optimization methods extend the capabilities of FBA by incorporating additional constraints,
such as kinetic, thermodynamic, and regulatory constraints, to improve the accuracy of metabolic flux predictions
(Pandey et al., 2018; Sen et al., 2022). These methods allow for a more detailed and realistic representation of
metabolic networks, enabling the analysis of complex cellular behaviors and the identification of key metabolic
bottlenecks. For instance, the Maximum Metabolic Flexibility (MMF) method utilizes the observation that
microorganisms often favor a suboptimal growth rate to maintain metabolic flexibility, thereby improving the
quantitative predictions made by FBA.
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6.3 Integration with omics data
The integration of omics data, such as transcriptomics, proteomics, and metabolomics, into metabolic network
models has significantly enhanced their predictive capabilities. High-throughput technologies have generated vast
amounts of omics data, which can be used to refine and constrain metabolic models, leading to more accurate
predictions of cellular phenotypes (Blazier and Papin, 2012; Wang et al., 2021). Several methods have been
developed to incorporate omics data into FBA, such as the Relative Expression and Metabolomic Integrations
(REMI) method, which integrates gene expression and metabolomic data with thermodynamic constraints to
provide more robust and biologically relevant results (Figure 2) (Pandey et al., 2018). These integrated models are
valuable for understanding the dynamic adaptation of biochemical reaction fluxes and for exploring the interplay
between metabolism and regulation in various physiological states (Wang et al., 2021).

Figure 2 A genome-scale flux balance analysis (FBA) model and sets of gene-expression and or metabolomic data (Adopted from
Pandey et al., 2018)

In the pre-processing step, the FBA model is converted into a thermodynamic-based flux analysis (TFA)
formulation, and the relative flux ratios are further assessed based on the omics data. Also based on the omics data
provided, REMI translates to the REMI-TGex, REMI-TM, and REMI-TGexM methods (third block). Examples
of gene-expression and metabolomic data (second block) together with a toy mode (third block) are used to
illustrate the applicability of the REMI methods. The theoretical maximum consistency score (TMCS) is the
number of available omics data (for metabolites, genes (reactions), or both) and the maximum consistency score
(MCS) is the number of those constraints that are consistent with fluxes and could be integrated into REMI
models. The MCS is always equal to or smaller than the TMCS.

7 Challenges and Future Directions
7.1 Scalability and complexity
One of the primary challenges in modeling biological networks is managing the scalability and complexity of
these systems. Biological networks often involve numerous components and interactions, making it difficult to
create models that are both comprehensive and computationally feasible. For instance, the integration of various
omics data (proteomics, genomics, lipidomics, and metabolomics) has led to large inventories of biological
entities, but understanding how these entities interact remains a significant challenge (Kholodenko et al., 2012).
Additionally, traditional methods such as Boolean networks and differential equations face limitations when
applied to complex signal transduction networks due to their inability to handle the spatial and temporal dynamics
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effectively (Lee et al., 2020). New approaches like Most Permissive Boolean Networks (MPBNs) have been
proposed to reduce the complexity of dynamical analysis, enabling the modeling of genome-scale networks
(Paulevé et al., 2020).

7.2 Data integration and interoperability
The integration of heterogeneous data types is another major challenge. Advances in high-throughput techniques
have generated vast amounts of diverse omics data, which need to be integrated to provide a holistic view of
biological systems. However, the complexity, heterogeneity, and high-dimensionality of these data pose
significant challenges for data integration and interoperability (Lee et al., 2020). Methods for collective mining of
various types of networked biological data have been proposed, but they still face limitations in dealing with
heterogeneous networked data (Gligorijević and Przulj, 2015). The development of heterogeneous multi-layered
networks (HMLNs) has shown promise in integrating diverse biological data, but new computational challenges
arise in establishing causal genotype-phenotype associations and understanding environmental impacts on
organisms (Wang et al., 2021).

7.3 Advances in computational techniques
To address the challenges of scalability, complexity, and data integration, advances in computational techniques
are essential. Probabilistic models like ProbRules, which combine probabilities and logical rules, have been
developed to represent the dynamics of biological systems across multiple scales (Grob et al., 2019). These
models have shown robustness in predicting gene expression readouts and clarifying molecular mechanisms.
Additionally, non-negative matrix factorization-based approaches have been highlighted for their potential in
dealing with heterogeneous data and providing accurate integrative analyses (Pham et al., 2008). The application
of machine learning methods to network biology has also been emphasized, offering new biological insights and
aiding in the development of more accurate in silico representations of biological systems (Liu et al., 2020).

Acknowledgments
We would like to thank Ms Kim for reading the manuscript and providing valuable feedback that improved the clarity of the text. We
also appreciate two anonymous peer reviewers who contributed to the evaluation of this manuscript.

Conflict of Interest Disclosure
The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a
potential conflict of interest.

References
Aittokallio T., and Schwikowski B., 2006, Graph-based methods for analysing networks in cell biology, Briefings in Bioinformatics, 7(3): 243-255.

https://doi.org/10.1093/BIB/BBL022
Blazier A.S., and Papin J.A., 2012, Integration of expression data in genome-scale metabolic network reconstructions, Frontiers in Physiology, 3: 299.

https://doi.org/10.3389/fphys.2012.00299
Boccaletti S., Latora V., Moreno Y., Chavez M., and Hwang D., 2006, Complex networks: structure and dynamics, Physics Reports, 424: 175-308.

https://doi.org/10.1016/J.PHYSREP.2005.10.009
Bocci F., Jia D., Nie Q., Jolly M.K., and Onuchic J., 2023, Theoretical and computational tools to model multistable gene regulatory networks, Reports on,

Progress in Physics, 2023: 86.
https://doi.org/10.1088/1361-6633/acec88

Covert M., Knight E., Reed J., Herrgård M., and Palsson B., 2004, Integrating high-throughput and computational data elucidates bacterial networks, Nature,
429: 92-96.
https://doi.org/10.1038/nature02456

Gao W., Wu H., Siddiqui M., and Baig A., 2017, Study of biological networks using graph theory, Saudi Journal of Biological Sciences, 25: 1212-1219.
https://doi.org/10.1016/j.sjbs.2017.11.022

Glass K., Huttenhower C., Quackenbush J., and Yuan G., 2013, Passing messages between biological networks to refine predicted interactions, PLoS ONE, 8(5):
e64832.
https://doi.org/10.1371/journal.pone.0064832

Gligorijević V., and Przulj N., 2015, Methods for biological data integration: perspectives and challenges, Journal of The Royal Society Interface, 12(112):
20150571.
https://doi.org/10.1098/rsif.2015.0571

https://doi.org/10.1093/BIB/BBL022.
https://doi.org/10.3389/fphys.2012.00299.
https://doi.org/10.1016/J.PHYSREP.2005.10.009.
https://doi.org/10.1088/1361-6633/acec88.
https://doi.org/10.1038/nature02456.
https://doi.org/10.1016/j.sjbs.2017.11.022.
https://doi.org/10.1371/journal.pone.0064832.
https://doi.org/10.1098/rsif.2015.0571.


Computational Molecular Biology 2024, Vol.14, No.2, 45-53
http://bioscipublisher.com/index.php/cmb

52

Grob A., Kracher B., Kraus J.M., Kühlwein S.D., Pfister A.S., Wiese S., Luckert K., Pötz O., Joos T., Daele D., Raedt L., Kühl M., and Kestler H., 2019,
Representing dynamic biological networks with multi-scale probabilistic models, Communications Biology, 2(1): 21.
https://doi.org/10.1038/s42003-018-0268-3

Hinkelmann F., Murrugarra D., Jarrah A., and Laubenbacher R., 2010, A mathematical framework for agent based models of complex biological networks,
Bulletin of Mathematical Biology, 73: 1583-1602.
https://doi.org/10.1007/S11538-010-9582-8.

Hollingsworth S., and Dror R., 2018, Molecular dynamics simulation for all, Neuron, 99: 1129-1143.
https://doi.org/10.1016/j.neuron.2018.08.011

Jolly M.K., and Roy S., 2022, Editorial: topical collection on emergent dynamics of biological networks, Journal of Biosciences, 47(4): 82.
Kalyaanamoorthy S., and Chen Y., 2014, Modelling and enhanced molecular dynamics to steer structure-based drug discovery, Progress in Biophysics and

Molecular Biology, 114(3): 123-136.
https://doi.org/10.1016/j.pbiomolbio.2013.06.004

Karlebach G., and Shamir R., 2008, Modelling and analysis of gene regulatory networks, Nature Reviews Molecular Cell Biology, 9: 770-780.
https://doi.org/10.1038/nrm2503

Kholodenko B., Yaffe M.B., and Kolch W., 2012, Computational approaches for analyzing information flow in biological networks, Science Signaling, 5(220):
re1.
https://doi.org/10.1126/scisignal.2002961

Koutrouli M., Karatzas E., Páez-Espino D., and Pavlopoulos G.A., 2020, A guide to conquer the biological network era using graph theory, Frontiers in
Bioengineering and Biotechnology, 8: 34.
https://doi.org/10.3389/fbioe.2020.00034

Lee B., Zhang S., Poleksic A., and Xie L., 2020, Heterogeneous multi-layered network model for omics data integration and analysis, Frontiers in Genetics, 10.
https://doi.org/10.3389/fgene.2019.01381

Liang J., and Han J., 2012, Stochastic boolean networks: an efficient approach to modeling gene regulatory networks, BMC Systems Biology, 6: 1-21.
https://doi.org/10.1186/1752-0509-6-113

Liang Y., and Kelemen A., 2018, Dynamic modeling and network approaches for omics time course data: overview of computational approaches and
applications, Briefings in Bioinformatics, 19(5): 1051-1068.
https://doi.org/10.1093/bib/bbx036

Liang Z., Verkhivker G., and Hu G., 2020, Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and
allosteric regulation: theory tools and applications, Briefings in Bioinformatics, 21(3): 815-835.
https://doi.org/10.1093/bib/bbz029

Liu C., Ma Y., Zhao J., Nussinov R., Zhang Y., Cheng F., and Zhang Z., 2020, Computational network biology: data models and applications, Physics Reports,
846: 1-66.
https://doi.org/10.1016/j.physrep.2019.12.004

Liu X.W., Shi D.F., Zhou S.Y., Liu H.L., Liu H.X., and Yao X.J., 2018, Molecular dynamics simulations and novel drug discovery, Expert Opinion on Drug
Discovery, 13(1): 23-37.
https://doi.org/10.1080/17460441.2018.1403419

Mangan N., Brunton S., Proctor J., and Kutz J., 2016, Inferring biological networks by sparse identification of nonlinear dynamics, IEEE Transactions on
Molecular Biological and Multi-Scale Communications, 2: 52-63.
https://doi.org/10.1109/TMBMC.2016.2633265

Manipur I., Granata I., Maddalena L., and Guarracino M.R., 2020, Clustering analysis of tumor metabolic networks, BMC Bioinformatics, 21: 1-14.
https://doi.org/10.1186/s12859-020-03564-9

Megchelenbrink W., Rossell S., Huynen M.A., Notebaart R.A., and Marchiori E., 2015, Estimating metabolic fluxes using a maximum network flexibility
paradigm, PLoS ONE, 10(10): e0139665.
https://doi.org/10.1371/journal.pone.0139665

Mochizuki A., 2016, Theoretical approaches for the dynamics of complex biological systems from information of networks, Proceedings of the Japan Academy,
Series B Physical and Biological Sciences, 92: 255-264.
https://doi.org/10.2183/pjab.92.255

Murrugarra D., and Aguilar B., 2019, Modeling the stochastic nature of gene regulation with boolean networks, Algebraic and Combinatorial Computational
Biology, 2019: 147-173.
https://doi.org/10.1016/B978-0-12-814066-6.00005-2

Muzio G., O’Bray L., and Borgwardt K., 2020, Biological network analysis with deep learning, Briefings in Bioinformatics, 22: 1515-1530.
https://doi.org/10.1093/bib/bbaa257

Nardini J.T., Baker R.E., Simpson M.E., and Flores K.B., 2020, Learning differential equation models from stochastic agent-based model simulations, Journal
of the Royal Society Interface, 18(176): 20200987.
https://doi.org/10.1098/rsif.2020.0987

Pandey V., Hadadi N., and Hatzimanikatis V., 2018, Enhanced flux prediction by integrating relative expression and relative metabolite abundance into
thermodynamically consistent metabolic models, PLoS Computational Biology, 15(5): e1007036.
https://doi.org/10.1371/journal.pcbi.1007036

https://doi.org/10.1038/s42003-018-0268-3.
https://doi.org/10.1007/S11538-010-9582-8.
https://doi.org/10.1016/j.neuron.2018.08.011.
https://doi.org/10.1016/j.pbiomolbio.2013.06.004.
https://doi.org/10.1038/nrm2503.
https://doi.org/10.1126/scisignal.2002961.
https://doi.org/10.3389/fbioe.2020.00034.
https://doi.org/10.3389/fgene.2019.01381.
https://doi.org/10.1186/1752-0509-6-113.
https://doi.org/10.1093/bib/bbx036.
https://doi.org/10.1093/bib/bbz029.
https://doi.org/10.1016/j.physrep.2019.12.004.
https://doi.org/10.1080/17460441.2018.1403419.
https://doi.org/10.1109/TMBMC.2016.2633265.
https://doi.org/10.1186/s12859-020-03564-9.
https://doi.org/10.1371/journal.pone.0139665.
https://doi.org/10.2183/pjab.92.255.
https://doi.org/10.1016/B978-0-12-814066-6.00005-2.
https://doi.org/10.1093/bib/bbaa257.
https://doi.org/10.1098/rsif.2020.0987.
https://doi.org/10.1371/journal.pcbi.1007036.


Computational Molecular Biology 2024, Vol.14, No.2, 45-53
http://bioscipublisher.com/index.php/cmb

53

Paulevé L., Kolcák J., Chatain T., and Haar S., 2020, Reconciling qualitative abstract and scalable modeling of biological networks, Nature Communications,
11(1): 4256.
https://doi.org/10.1038/s41467-020-18112-5

Pavlopoulos G.A., Secrier M., Moschopoulos C.N., Soldatos T., Kossida S., Aerts J., Schneider R., and Bagos P., 2011, Using graph theory to analyze biological
networks, BioData Mining, 4: 1-27.
https://doi.org/10.1186/1756-0381-4-10

Pham E., Li I., and Truong K., 2008, Computational modeling approaches for studying of synthetic biological networks, Current Bioinformatics, 3: 130-141.
https://doi.org/10.2174/157489308784340667

Saadat pour A., and Albert R., 2013, Boolean modeling of biological regulatory networks: a methodology tutorial, Methods, 62(1): 3-12.
https://doi.org/10.1016/j.ymeth.2012.10.012

Schneider M., and Antes I., 2021, SenseNet a tool for analysis of protein structure networks obtained from molecular dynamics simulations, PLoS ONE, 17(3):
e0265194.
https://doi.org/10.1371/journal.pone.0265194

Sen P., 2022, Flux balance analysis of metabolic networks for efficient engineering of microbial cell factories, Biotechnology and Genetic Engineering Reviews,
2022: 1-34.
https://doi.org/10.1080/02648725.2022.2152631

Tyson J., Laomettachit T., and Kraikivski P., 2019, Modeling the dynamic behavior of biochemical regulatory networks, Journal of Theoretical Biology, 462:
514-527.
https://doi.org/10.1016/j.jtbi.2018.11.034

Vidal-Limon A., Aguilar-Toalá J., and Liceaga A., 2022, Integration of molecular docking analysis and molecular dynamics simulations for studying food
proteins and bioactive peptides, Journal of Agricultural and Food Chemistry, 70(4): 934-943.
https://doi.org/10.1021/acs.jafc.1c06110

Wang Y.X.R., Li L., Li J.J., 2021, Network modeling in biology: statistical methods for gene and brain networks, Statistical Science: A Review Journal of the
Institute of Mathematical Statistics, 36(1): 89.
https://doi.org/10.1214/20-sts792

Wang B., Xie Z., Chen J., and Wu Y., 2018, Integrating structural information to study the dynamics of protein-protein interactions in cells, Structure,
26(10):1414-1424.
https://doi.org/10.1016/j.str.2018.07.010

Wang S., Fan K., Luo N., Cao Y., Wu F., Zhang C., Heller K., and You L., 2019, Massive computational acceleration by using neural networks to emulate
mechanism-based biological models, Nature Communications, 10(1): 4354.
https://doi.org/10.1038/s41467-019-12342-y

Wang X., Zhang Y., and Wen T., 2021, Progress on genome-scale metabolic models integrated with multi-omics data, Chinese Science Bulletin, 13(7): 855.
https://doi.org/10.1360/tb-2020-1468

Wang Z., and Gao H., 2010, Dynamics analysis of gene regulatory networks, International Journal of Systems Science, 41: 1-4.
https://doi.org/10.1080/00207720903477952

https://doi.org/10.1038/s41467-020-18112-5.
https://doi.org/10.1186/1756-0381-4-10.
https://doi.org/10.2174/157489308784340667.
https://doi.org/10.1016/j.ymeth.2012.10.012.
https://doi.org/10.1371/journal.pone.0265194.
https://doi.org/10.1080/02648725.2022.2152631.
https://doi.org/10.1016/j.jtbi.2018.11.034.
https://doi.org/10.1021/acs.jafc.1c06110.
https://doi.org/10.1214/20-sts792.
https://doi.org/10.1016/j.str.2018.07.010.
https://doi.org/10.1038/s41467-019-12342-y.
https://doi.org/10.1360/tb-2020-1468.
https://doi.org/10.1080/00207720903477952.

