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Abstract This study explores various methods and tools developed for large-scale data processing in biological research. We
studied comprehensive toolkits such as TBtools, which provide user-friendly interfaces for complex data analysis, as well as
distributed computing frameworks such as MapReduce, which solve the problem of imbalance in large DNA datasets. In addition, we
discussed the challenges posed by the heterogeneity and complexity of big biological data, emphasizing the need for powerful and
scalable analytical frameworks, such as bigSCale for single-cell RNA sequencing, in order to gain a comprehensive understanding of
the current status and future directions of big data analysis in the field of biology.
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1 Introduction

The advent of high-throughput technologies has revolutionized the field of biology, ushering in the era of "big
data." This transformation is characterized by the generation of vast amounts of data across various biological
domains, including genomics, transcriptomics, proteomics, and metabolomics (Davis-Turak et al., 2017). The
Human Genome Project, for instance, exemplifies the scale of data generation, having taken 13 years and over $3
billion to sequence the human genome, a task that can now be accomplished in a few days for a fraction of the
cost (Li and Chen, 2014; Goh and Wong, 2020). The rapid accumulation of biological data has necessitated the
development of sophisticated tools and techniques to manage, analyze, and interpret these large datasets (Greene
et al., 2014; Chen et al., 2020).

The ability to process and analyze large-scale biological data is crucial for advancing our understanding of
complex biological systems and translating this knowledge into practical applications. High-dimensional data
spaces, such as those generated by genomic and proteomic technologies, present unique challenges in terms of
data integration, analysis, and interpretation (Clarke et al., 2008). Effective data processing methods enable
researchers to uncover hidden biological regularities, understand cellular processes, and develop predictive
models for disease diagnosis and treatment (Ebrahim et al., 2016; Gutierrez et al., 2018). Moreover, the
integration of multi-omic data provides a comprehensive view of biological systems, facilitating the discovery of
novel insights that would be unattainable through single-omic approaches (Tariq et al., 2020; Juan and Huang,
2023).

This study provides a comprehensive overview of the methods and tools currently used for large-scale data
processing in biology. By studying the challenges and opportunities related to big data in life sciences, we
emphasize the advancements in data integration, quantitative analysis, and computing technologies that drive the
field forward. In addition, this study will discuss the impact of these methods on future research and their potential
applications in clinical and translational medicine, identify gaps in current methods, and propose directions for
future research to improve the scalability and efficiency of biological big data analysis.

2 Overview of Big Data in Biological Research

2.1 Types of biological data

In the "Omics" era of life sciences, biological data is diverse and encompasses various levels of biological systems.
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This includes genomic data, transcriptomic data, epigenomic data, proteomic data, metabolomic data, molecular
imaging, molecular pathways, population data, and clinical/medical records (Li and Chen, 2014). The rapid
development of high-throughput sequencing (HTS) techniques has significantly contributed to the generation of
large-scale biological data, making it possible to profile biological systems in a cost-efficient manner (Greene et
al., 2014). The data generated from these techniques are vast and complex, often requiring sophisticated tools and
methodologies for effective analysis and interpretation.

2.2 Sources of big data in biology

The primary sources of big data in biology include next-generation sequencing (NGS) technologies, which have
revolutionized the field by enabling the generation of massive datasets that can answer long-standing questions
about human diseases and biological processes (Mardis, 2016). Additionally, observational networks and
space-based data have facilitated the discovery of emergent mechanisms and phenomena on regional and global
scales, further contributing to the pool of big biological data (Xia et al., 2020). The Human Genome Project is a
notable example, which utilized extensive resources and collaboration to sequence the human genome, a task that
can now be accomplished much more rapidly and cost-effectively due to advancements in sequencing
technologies (Li and Chen, 2014).

2.3 Challenges in handling biological big data

Handling big biological data presents several challenges. One of the primary issues is the complexity and
heterogeneity of the data, which requires integration from multiple autonomous sources (Wu et al., 2014). The
volume, velocity, variety, and veracity of big data (the four V's) necessitate specialized theories and technologies
for effective management and analysis (Li and Chen, 2014; Younas, 2019). Current data mining techniques often
fall short in meeting the new space and time requirements posed by big data, highlighting the need for more robust
and scalable solutions (Kamal et al., 2016). Moreover, the lack of standardized integration processes complicates
the task of combining data from various sources into a unified format for analysis (Almasoud et al., 2020). The
scientific community must also address issues related to data quality, security, and privacy to fully harness the
potential of big data analytics in biological research (Wu et al., 2014; Chen et al., 2020).

3 Methods for Large-Scale Data Processing

3.1 Data storage and management

3.1.1 Distributed databases

Distributed databases play a crucial role in managing large-scale biological data. Technologies such as Apache
Hadoop provide distributed and parallelized data processing capabilities, which are essential for handling
petabyte-scale datasets in genomics and other biological fields (O'Driscoll et al., 2013). These systems enable
efficient storage, retrieval, and processing of vast amounts of data by distributing the workload across multiple
nodes, thus enhancing performance and scalability.

3.1.2 Cloud computing solutions

Cloud computing offers scalable and flexible solutions for storing and processing large biological datasets.
Platforms like Sherlock leverage cloud technologies to provide a comprehensive data management system that
supports data storage, conversion, querying, and sharing (Figure 1) (Bohar et al., 2022). Cloud-based solutions
facilitate the handling of complex and large datasets by offering tools for distributed analytical queries and
optimized storage formats, such as the Optimized Row Columnar (ORC) format, which enhances data processing
efficiency.

3.1.3 Data security and privacy

As biological data often contain sensitive information, ensuring data security and privacy is paramount. The
HACE theorem and associated data-driven models emphasize the importance of incorporating security and
privacy considerations into big data processing frameworks (Wu et al., 2014). These models advocate for robust
security measures to protect data integrity and confidentiality while enabling efficient data mining and analysis.
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Figure 1 Overview of how the query engine and the Data Lake work together (Adopted from Bohar et al., 2022)

3.2 Data integration and interoperability

Integrating heterogeneous biological data from multiple sources is a significant challenge due to the diversity in
data types and formats. Recent methods, such as non-negative matrix factorization-based approaches, have shown
promise in effectively integrating various types of networked biological data, providing more holistic insights into
biological systems (Gligorijevi¢ and Przulj, 2015). Additionally, frameworks that utilize domain ontology and
distributed processing have been proposed to achieve seamless data integration, ensuring logical consistency and
facilitating further research and analysis (Almasoud et al., 2020).

3.3 Data cleaning and preprocessing

Data cleaning and preprocessing are critical steps in preparing large-scale biological data for analysis. Tools like
TBtools offer user-friendly interfaces and a wide range of functions for bulk sequence processing and interactive
data visualization, making it easier for biologists to handle big data without extensive programming knowledge
(Chen et al., 2020). Moreover, methodologies such as the MapReduce-based k-nearest neighbor (K-NN)
classification approach have been developed to reduce data imbalance and enhance the efficiency of data
classification and storage management (Kamal et al., 2016).

4 Analytical Techniques for Big Data

4.1 Machine learning algorithms

4.1.1 Supervised learning

Supervised learning algorithms are a cornerstone of big data analytics in biology, where labeled datasets are used
to train models to make predictions or classify data. Common supervised learning techniques include linear
regression, logistic regression, support vector machines (SVM), and random forests. These methods have been
effectively applied to various biological datasets, such as protein-coding data for disease identification and
treatment (Rahman, 2019). The use of supervised learning in bioinformatics allows for the development of
predictive models that can provide insights into complex biological processes and disease mechanisms (Greene et
al., 2014).

4.1.2 Unsupervised learning

Unsupervised learning algorithms are essential for analyzing large-scale biological data where labels are not
available. Techniques such as clustering, principal component analysis (PCA), and hierarchical clustering help in
identifying patterns and structures within the data. These methods are particularly useful in the initial stages of
data exploration and for discovering hidden relationships in biological networks (Greene et al., 2014).
Unsupervised learning has been applied to various biological datasets to uncover novel insights and generate
hypotheses for further investigation (Jan et al., 2017).

4.1.3 Deep learning approaches

Deep learning, a subset of machine learning, has gained significant traction in the field of big data analytics due to
its ability to handle large, complex, and heterogeneous datasets. Deep learning models, such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and autoencoders, have been successfully applied to
biological data for tasks such as image classification, sequence analysis, and network prediction (Najafabadi et al.,
2015; Tonidandel et al., 2018; Jin et al., 2020). These models can extract high-level features from raw data,
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enabling the discovery of intricate patterns and relationships that traditional methods might miss. Deep learning
has shown promise in addressing challenges in big data analytics, including scalability, high-dimensional data, and
the integration of diverse data types (Najafabadi et al., 2015; Shukla et al., 2021).

4.2 Statistical methods

Statistical methods play a crucial role in the preprocessing and analysis of big data in biology. Techniques such as
data normalization, transformation, and noise reduction are essential for preparing data for further analysis.
Methods like the Box-Cox transformation and linear transformation have been shown to improve the performance
of machine learning algorithms by making the data more consistent and noise-free (Rahman, 2019). Additionally,
statistical models such as the hidden Markov model (HMM) are used for sequence analysis and have
demonstrated high accuracy and reliability in biological data analysis (Rahman, 2019).

4.3 Network analysis

Network analysis is a powerful tool for understanding the complex interactions within biological systems. By
representing biological entities (e.g., genes, proteins) as nodes and their interactions as edges, network analysis
can reveal the underlying structure and dynamics of biological networks. Techniques such as graph-based
algorithms and network-based clustering are used to identify key components and modules within these networks
(Kashyap et al., 2015; Jin et al., 2020). Deep learning approaches have also been integrated with network analysis
to handle large and heterogeneous graph data structures, enabling the extraction of meaningful information from
complex biological networks (JaseenaK and Kovoor, 2018; Jin et al., 2020). This integration has facilitated
advancements in areas such as disease network analysis, drug discovery, and the identification of therapeutic
targets (Kashyap et al., 2015; Jin et al., 2020).

5 Applications of Big Data Analytics in Biology

5.1 Genomics and transcriptomics

Big data analytics has significantly impacted the fields of genomics and transcriptomics, enabling researchers to
handle and interpret vast amounts of data generated by high-throughput sequencing technologies. The integration
of big data analytics in genomics has facilitated the rapid sequencing of genomes, which was exemplified by the
Human Genome Project. This project, which initially took 13 years and over $3 billion, can now be accomplished
in just a few days for a fraction of the cost (Li and Chen, 2014). The development of next-generation sequencing
(NGS) technologies, such as whole-genome sequencing (WGS) and whole-exome sequencing (WES), has further
accelerated the generation of genomic data, allowing for comprehensive studies of genetic variations and their
implications in various biological processes and diseases (Hien et al., 2021).

Machine learning algorithms have been particularly useful in the analysis of genomic data, providing tools for the
annotation of sequence elements and the integration of epigenetic, proteomic, and metabolomic data (Libbrecht
and Noble, 2015). These algorithms help in identifying clinically actionable genetic variants, which are crucial for
the development of personalized medicine (He et al., 2017). The integration of genomic data with electronic
health records (EHRs) has also opened new avenues for individualized diagnostic and therapeutic strategies,
although it presents challenges in data manipulation and management (He et al., 2017).

5.2 Proteomics and metabolomics

Proteomics and metabolomics are other critical areas where big data analytics have made substantial contributions.
The advancements in mass spectrometry and other analytical methods have increased the intersection between
proteomics and big data science, enabling the generation of large-scale proteomic and metabolomic datasets
(Perez-Riverol and Moreno, 2019). The integration of these datasets with transcriptomic data provides a more
comprehensive understanding of biological systems, as it allows for the analysis of gene expression, protein
translation, and post-translational modifications in a unified manner (Kumar et al., 2016).

High-throughput strategies, such as the sample preparation for multi-omics technologies (SPOT), have been
developed to enhance the efficiency of multiomic analyses. These strategies enable the simultaneous analysis of
transcriptomic, proteomic, and metabolomic data from a common sample, thereby reducing the resources required
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and increasing the throughput of multiomic experiments (Gutierrez et al., 2018). Additionally, bioinformatics tools
like Metabox facilitate the deep phenotyping analytics of metabolomic data, supporting its integration with
proteomic and transcriptomic contexts (Wanichthanarak et al., 2017). The use of software containers and
workflow environments, such as Galaxy and Nextflow, has further improved the scalability and reproducibility of
proteomic and metabolomic data analysis. These tools allow for the distribution of analytics tasks across multiple
computational resources, addressing the challenges of handling large and complex datasets (Perez-Riverol and
Moreno, 2019). The integration of these high-throughput and scalable approaches is essential for addressing
complex clinical and biological questions, ultimately leading to a better understanding of disease mechanisms and
the identification of potential therapeutic targets (Gutierrez et al., 2018; Perez-Riverol and Moreno, 2019).

6 Tools and Platforms for Biological Big Data

6.1 Open-source tools

Open-source tools have become indispensable in the realm of biological big data due to their flexibility,
cost-effectiveness, and community-driven development. One notable example is TBtools, a comprehensive toolkit
designed for interactive analyses of big biological data. TBtools offers over 100 functions for tasks ranging from
bulk sequence processing to interactive data visualization, all within a user-friendly interface. This
platform-independent software is freely available and supports various operating systems with Java Runtime
Environment 1.6 or newer (Figure 2) (Chen et al., 2020).
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Another significant open-source platform is Sherlock, which addresses the challenges of data collection, storage,
and analysis in computational biology. Sherlock leverages modern big data technologies like Docker and
PrestoDB to enable users to manage, query, and share large and complex datasets efficiently. It supports various
structured data types and converts them into optimized storage formats, facilitating quick and efficient distributed
analytical queries (Bohar et al., 2022).

OpenBIS is another flexible open-source framework designed for managing and analyzing complex biological
data. It allows users to collect, integrate, share, and publish data while connecting to data processing pipelines.
openBIS is highly scalable and customizable, making it suitable for a wide range of biological data types and
research domains (Bauch et al., 2011). PipeCraft is a flexible toolkit specifically designed for the bioinformatics
analysis of high-throughput amplicon sequencing data. It provides a user-friendly graphical interface that links
several public tools, allowing users to customize their analysis pipelines according to their specific needs.
PipeCraft supports various sequencing platforms and ensures easy customization and traceability of analytical
steps (Anslan et al., 2017).

6.2 Commercial software solutions

Commercial software solutions for biological big data often provide robust, enterprise-level support and advanced
features that may not be available in open-source tools. These solutions are designed to handle the vast amounts of
data generated by modern biological research and offer comprehensive support for data analysis, storage, and
management. While the provided data does not include specific examples of commercial software solutions, it is
important to note that these solutions typically offer enhanced performance, scalability, and integration
capabilities. They often come with dedicated customer support, regular updates, and compliance with industry
standards, making them suitable for large-scale and mission-critical applications in biological research.

6.3 Customized pipelines

Customized pipelines are essential for addressing the unique requirements of specific biological research projects.
These pipelines often integrate multiple software tools and platforms to create tailored workflows that can handle
the complexity and scale of big biological data. The use of application containers and workflows, such as those
enabled by Docker, has revolutionized the deployment and reproducibility of computational experiments in
genomics. By isolating applications and creating secure, scalable platforms, researchers can significantly reduce
the time needed for data analysis and improve the reproducibility of their experiments (Schulz et al., 2016).

High-performance computing (HPC) platforms also play a crucial role in customized pipelines for big biological
data analysis. These platforms provide the computational power needed to handle the complexity and volume of
biological data, enabling researchers to gain deeper insights into biological functions. HPC platforms are
particularly useful for tasks such as genomic sequencing data analysis and protein structure analysis, where
traditional computing platforms may fall short (Yin et al., 2017; Yeh et al., 2023).

7 Challenges and Future Directions

7.1 Scalability and performance issues

The rapid growth of biological data, driven by advancements in high-throughput sequencing technologies, has
outpaced the capabilities of traditional data analysis platforms. This has necessitated the development of
high-performance computing (HPC) platforms and scalable algorithms to handle the massive computational
demands of big biological data analytics (Yin et al., 2017). The scalability of bioinformatics software is a critical
concern, as it must efficiently manage increasing workloads. Modern cloud computing frameworks like
MapReduce and Spark have been employed to implement divide-and-conquer strategies in distributed computing
environments, addressing these scalability challenges (Yang et al., 2017). However, ensuring the validity of
computational outputs remains a significant issue, requiring robust software testing techniques such as
metamorphic testing to ensure the accuracy and reliability of bioinformatics tools (Yang et al., 2017).

7.2 Integration of multimodal data
The integration of multimodal data, particularly in single-cell biology, presents a considerable challenge due to the
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complexity and heterogeneity of the data involved. Single-cell techniques now enable the simultaneous
measurement of multiple data modalities, providing new insights into biological processes that cannot be inferred
from a single mode of assay. However, integrating these complex datasets into coherent biological models
requires sophisticated computational methods and data visualization approaches (Miao et al., 2021). Strategies for
integrating matched data (measured on the same cell) include joint latent space inference and biological causal
modeling, while unmatched data (measured on different cells) require methods like annotated group matching and
aligning spaces (Miao et al., 2021). Despite these advancements, visualization methods for integrated multimodal
single-cell data are still underdeveloped, and future challenges include accounting for modality-specific noise and
improving computing efficiency (Miao et al., 2021).

7.3 Ethical and regulatory considerations

The use of big data in health research introduces novel ethical and regulatory challenges that must be carefully
considered. The aggregation and analysis of large-scale, heterogeneous data sources can lead to significant
preventive, diagnostic, and therapeutic benefits. However, the methodological novelty and computational
complexity of big data health research raise unique challenges for Ethics Review Committees (ERCs) and
institutional review boards (Ienca et al., 2018). These challenges include ensuring data privacy, managing
sensitive personal health data, and addressing power dynamics in the doctor-patient relationship (Galetsi et al.,
2019). ERCs must adapt their evaluation criteria to assess the methodological and ethical viability of
health-related big data studies, ensuring that the benefits of big data analytics are realized without compromising
ethical standards (Ienca et al., 2018). Future research should focus on developing standardized systems for
securely extracting and processing private healthcare datasets to mitigate these ethical and regulatory concerns
(Galetsi et al., 2019).
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