
Computational Molecular Biology 2024, Vol.14, No.2, 64-75
http://bioscipublisher.com/index.php/cmb

64

Feature Review Open Access

Emerging Trends in Multi-Omics Data Integration: Challenges and Future
Directions
Jie Zhang
Institute of Life Sciences, Jiyang Colloge of Zhejiang A&F University, Zhuji, 311800, Zhejiang, China

Corresponding email: jie.zhang@jicat.org
ComputationalMolecular Biology, 2024, Vol.14, No.2 doi: 10.5376/cmb.2024.14.0008
Received: 09 Feb., 2024
Accepted: 20 Mar., 2024
Published: 07 Apr., 2024
Copyright © 2024 Zhang, This is an open access article published under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Preferred citation for this article:
Zhang J., 2024, Emerging Trends in multi-omics data integration: challenges and future directions, Computational Molecular Biology, 14(2): 64-75 (doi:
10.5376/cmb.2024.14.0008)

Abstract This study analyzed the latest trends, challenges, and future directions of multi omics data integration. High throughput
technology enables the generation of large amounts of data at multiple omics levels, including genomics, transcriptomics, proteomics,
and metabolomics. However, integrating these heterogeneous datasets faces significant challenges due to differences in data types,
dimensions, and a lack of standardized analysis protocols. We discussed various integration methods, including data-driven,
knowledge driven, and machine learning approaches, with a focus on their applications in disease subtype classification, biomarker
discovery, and precision medicine. In addition, we also analyzed the computational and visualization challenges associated with
single-cell multi omics data and proposed future directions for developing stronger and more interpretable integration strategies,
hoping to provide a comprehensive overview of the current status of multi omics data integration and demonstrate its potential in
translational biomedical research and clinical practice.
KeywordsMulti-omics integration; High-throughput technologies; Machine learning; Precision medicine; Single-cell analysis

1 Introduction
The advent of high-throughput technologies has revolutionized the field of biological research, enabling the
comprehensive profiling of various molecular layers within biological systems. These layers include genomics,
transcriptomics, proteomics, metabolomics, and more recently, single-cell omics (Misra et al., 2019; Miao et al.,
2021; Wörheide et al., 2021). Multi-omics approaches aim to integrate these diverse datasets to provide a holistic
view of the complex molecular interactions and regulatory mechanisms that underpin biological processes and
disease states (Ebrahim et al., 2016; Colomé-Tatché and Theis, 2018; Wörheide et al., 2021). The integration of
multi-omics data allows researchers to uncover hidden biological regularities and gain deeper insights into cellular
functions and physiological responses (Ebrahim et al., 2016; Santiago-Rodriguez and Hollister, 2021).

The integration of multi-omics data is crucial for advancing our understanding of complex biological systems. By
combining data from different omics layers, researchers can achieve a more comprehensive and nuanced
understanding of the molecular underpinnings of health and disease (Misra et al., 2019; Wörheide et al., 2021;
Agamah et al., 2022). This integrative approach facilitates the identification of novel biomarkers, disease subtypes,
and therapeutic targets, thereby enhancing the precision and efficacy of medical interventions (Graw et al., 2020;
Santiago-Rodriguez and Hollister, 2021). Moreover, multi-omics data integration helps in overcoming the
limitations of individual omics datasets, such as data heterogeneity and high dimensionality, by providing a more
robust and contextually relevant analysis (Misra et al., 2019; Sokač et al., 2023).

This study provides a comprehensive overview of emerging trends in multi omics data integration, with a focus on
the current challenges and future directions in this rapidly developing field. Researchers discuss various
integration methods, including data-driven, knowledge-based, simultaneous, and step-by-step approaches, and
their applications in recent multi omics studies. In addition, computational and statistical tools developed for the
integration of multi omics data will be explored, emphasizing their advantages, limitations, and potential for
standardization.
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2 Overview of Multi-Omics Data Types
2.1 Genomics
Genomics is the study of the complete set of DNA (the genome) in an organism, including its structure, function,
evolution, and mapping. Genomic data typically involve DNA sequences, single nucleotide polymorphisms
(SNPs), copy number variations (CNVs), and other genetic variations. The advent of high-throughput sequencing
technologies has revolutionized genomics, enabling the generation of vast amounts of data that can be used to
identify genetic factors associated with diseases, understand evolutionary relationships, and explore genetic
diversity within and between populations (Ritchie et al., 2015; Wörheide et al., 2021) Genomic data serve as the
foundation for other omics layers, providing the blueprint for the synthesis of RNA and proteins. Integrating
genomics with other omics data can reveal how genetic variations influence gene expression, protein function, and
metabolic pathways, thereby offering insights into the molecular mechanisms underlying phenotypic traits and
disease states (Manzoni et al., 2016; Misra et al., 2019).

2.2 Transcriptomics
Transcriptomics involves the study of the complete set of RNA transcripts produced by the genome under specific
circumstances or in a specific cell. This includes messenger RNA (mRNA), ribosomal RNA (rRNA), transfer
RNA (tRNA), and non-coding RNAs. Transcriptomic data provide a snapshot of gene expression levels, reflecting
which genes are active and to what extent in different tissues, developmental stages, or environmental conditions
(Wörheide et al., 2021; Santiago-Rodriguez and Hollister, 2021). High-throughput RNA sequencing (RNA-seq)
has become the standard method for transcriptomic analysis, allowing for the quantification of gene expression
and the identification of novel transcripts and alternative splicing events. Integrating transcriptomic data with
genomic and proteomic data can help elucidate the regulatory mechanisms controlling gene expression and how
these are altered in disease states (Manzoni et al., 2016; Zhang et al., 2019).

2.3 Proteomics
Proteomics is the large-scale study of proteins, which are the functional molecules in cells. Proteomic data include
information on protein expression levels, post-translational modifications, protein-protein interactions, and protein
localization. Proteins are the direct effectors of cellular functions, and their study is crucial for understanding the
biochemical activities within cells (Zhang et al., 2019; Wörheide et al., 2021). Mass spectrometry (MS) and
protein microarrays are commonly used techniques in proteomics. These methods can identify and quantify
thousands of proteins in a single experiment. Integrating proteomic data with genomic and transcriptomic data can
provide insights into how genetic and transcriptional changes are translated into functional outcomes at the protein
level. This integration is essential for understanding the complex regulatory networks and pathways involved in
cellular processes and disease mechanisms (Ritchie et al., 2015; Jendoubi, 2021).

2.4 Metabolomics
Metabolomics is the study of the complete set of metabolites (small molecules) within a biological sample.
Metabolites are the end products of cellular processes and provide a direct readout of the biochemical activity
within cells. Metabolomic data can reveal changes in metabolic pathways and networks in response to genetic,
environmental, or physiological changes (Pinu et al., 2019; Wörheide et al., 2021).

Techniques such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are used to
profile metabolites. Metabolomics is particularly valuable in multi-omics studies because it reflects the
downstream effects of changes in the genome, transcriptome, and proteome. Integrating metabolomic data with
other omics layers can help identify biomarkers for disease, understand metabolic dysregulation, and uncover the
biochemical basis of phenotypic traits (Jendoubi, 2021; Santiago-Rodriguez and Hollister, 2021). Each type of
omics data provides a unique layer of information about the biological system. Genomics offers insights into the
genetic blueprint, transcriptomics reveals gene expression patterns, proteomics uncovers protein functions and
interactions, and metabolomics reflects the biochemical activities within cells. Integrating these diverse data types
is essential for a holistic understanding of biological systems and for advancing precision medicine (Manzoni et
al., 2016; Misra et al., 2019; Zhang et al., 2019).
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3 Methods for Multi-Omics Data Integration
3.1 Statistical methods
Statistical methods for multi-omics data integration are foundational and often serve as the first step in
understanding complex biological systems. These methods include various forms of regression analysis, Bayesian
statistics, and factor analysis. For instance, Bayesian models can incorporate prior knowledge and handle different
data distributions, making them suitable for integrating heterogeneous omics data (Li et al., 2016). Additionally,
methods like Multiple Canonical Correlation Analysis (MCCA) and Multiple Factor Analysis (MFA) are used to
identify correlations and shared variations across different omics layers, facilitating a more comprehensive
understanding of biological interactions (Tini et al., 2019).

3.2 Machine learning approaches
Machine learning (ML) approaches have gained significant traction in multi-omics data integration due to their
ability to handle large, complex datasets and uncover hidden patterns. These approaches can be broadly
categorized into supervised learning, unsupervised learning, and deep learning techniques. Supervised learning
techniques are employed when the outcome variable is known, and the goal is to predict this outcome based on
input features from multiple omics datasets. Common methods include support vector machines (SVMs), random
forests, and various forms of regression analysis. For example, SVMs and random forests have been effectively
used to integrate genomic, proteomic, and metabolomic data for disease prediction and biomarker discovery
(Feldner-Busztin et al., 2023). These methods are particularly useful in precision medicine, where they can help in
patient stratification and personalized treatment plans (Reel et al., 2021).

Unsupervised learning techniques are used when the outcome variable is unknown, and the goal is to uncover the
underlying structure of the data. Clustering methods like k-means, hierarchical clustering, and more advanced
techniques like Similarity Network Fusion (SNF) are commonly used. SNF, for instance, integrates multiple types
of omics data by constructing similarity networks for each data type and then fusing them into a single network,
which can reveal complex biological relationships (Figure 1) (Tini et al., 2019). Other methods like Multiple
Co-Inertia Analysis (MCIA) and Joint and Individual Variation Explained (JIVE) are also employed to identify
shared and unique variations across different omics datasets (Tini et al., 2019).

Deep learning methods, particularly neural networks, have shown great promise in multi-omics data integration
due to their ability to model complex, non-linear relationships. Autoencoders, a type of neural network, are
frequently used to transform multi-omics data into latent representations that capture essential features while
reducing dimensionality (Hauptmann and Kramer, 2022). For example, methods like MOLI, Super.FELT, and
OmiEmbed have been developed to integrate multi-omics data for drug response prediction, showing that deep
learning can outperform traditional methods in certain contexts (Hauptmann and Kramer, 2022). Additionally,
novel architectures like Omics Stacking combine the advantages of intermediate and late integration, further
enhancing predictive performance (Figure 2) (Hauptmann and Kramer, 2022). Customizable deep learning
strategies, such as CustOmics, adapt training to each data source independently before learning cross-modality
interactions, providing interpretable results and high performance in tasks like tumor classification and survival
outcome prediction (Benkirane et al., 2023).

3.3 Network-based methods
Network-based methods are another powerful approach for integrating multi-omics data. These methods construct
networks where nodes represent biological entities (e.g., genes, proteins) and edges represent interactions or
associations between them. Network-based diffusion/propagation methods can exploit information captured in
each omics dataset to infer associations between different data types (Cominetti et al., 2023). For instance,
network-based models have been used to integrate genomic, transcriptomic, and proteomic data to identify key
regulatory pathways and potential therapeutic targets in cancer (Nicora et al., 2020). These methods can also
incorporate external knowledge from biological databases, enhancing the robustness and interpretability of the
results (Vahabi and Michailidis, 2022).
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Figure 1 Comparison of SNF results on the validation sets by using default parameters before and after feature selection and by using
trained parameters without feature selection (Adopted from Tini et al., 2019)
Image caption: Averaged F-scores obtained from the three analyses are represented with light-, dark- and medium-shaded bars,
respectively. Minimum F-scores are represented with black lines. A minimum F-score equal to 0 indicates that not all the subtypes
have been recognized. The number of subtypes recognized for each trial is added above the bars. (A) Simulated scenarios. (B) BXD
data set (G: gene expression, P: proteins, M: metabolites). (C) BRCA data set (G: gene expression, Mi: miRNA, Me: methylation).

Figure 2 Four Strategies for Multi-Omics Data Integration: Early Integration, Joint Integration, Late Integration, and Mixed
Integration (Adapted from Benkirane et al., 2023)
Image caption: a. Early Integration VAE: Variational Autoencoder architecture with early integration strategy. b. Joint Integration
VAE: Variational Autoencoder architecture with joint integration strategy. c. Late Integration VAE: Variational Autoencoder
architecture with late integration strategy.d. Mixed-Integration/CustOmics: This is a hierarchical architecture composed of specific
per-source autoencoders that converges into a central variational autoencoder (Adapted from Benkirane et al., 2023)
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4 Applications of Multi-Omics Data Integration
4.1 Precision medicine
Multi-omics data integration has revolutionized the field of precision medicine by enabling the development of
personalized treatment strategies. By combining data from genomics, transcriptomics, proteomics, and
metabolomics, researchers can gain a comprehensive understanding of the molecular mechanisms underlying
individual diseases. This holistic approach allows for the identification of patient-specific therapeutic targets and
the design of tailored treatment regimens. For instance, in oncology, multi-omics analyses have facilitated the
stratification of patients based on molecular subtypes, leading to more effective and personalized cancer therapies
(Nicora et al., 2020; Kang et al., 2021; Raufaste-Cazavieille et al., 2022). Additionally, the integration of
multi-omics data with clinical information has been shown to improve the prediction of treatment responses and
disease outcomes, further enhancing the precision of medical interventions (Reel et al., 2021; Terranova and
Venkatakrishnan, 2023).

The discovery of reliable biomarkers is crucial for the early diagnosis, prognosis, and monitoring of diseases.
Multi-omics data integration has emerged as a powerful tool for biomarker discovery, as it allows for the
simultaneous analysis of multiple molecular layers. This approach can reveal complex interactions and regulatory
networks that are not apparent when examining single-omics data alone. For example, in cancer research,
multi-omics analyses have identified novel biomarkers that can predict disease progression and response to
therapy, thereby guiding clinical decision-making (Olivier et al., 2019; Turanli et al., 2019; Demirel et al., 2021).
Moreover, the integration of multi-omics data has led to the identification of biomarkers for various other diseases,
including autoimmune disorders and cardiovascular diseases, highlighting its broad applicability in precision
medicine (Subramanian et al., 2020; Reel et al., 2021).

Predictive modeling is a key component of precision medicine, as it enables the anticipation of disease trajectories
and treatment outcomes. The integration of multi-omics data with advanced machine learning algorithms has
significantly enhanced the accuracy and robustness of predictive models. These models can capture the complex,
nonlinear relationships between different molecular entities and clinical variables, providing valuable insights into
disease mechanisms and therapeutic responses (Kang et al., 2021; Cominetti et al., 2023; Terranova and
Venkatakrishnan, 2023). For instance, in oncology, predictive models based on multi-omics data have been used to
forecast patient survival, treatment efficacy, and potential adverse effects, thereby informing personalized
treatment plans (Nicora et al., 2020; Raufaste-Cazavieille et al., 2022). Additionally, the use of multi-omics data in
predictive modeling has been extended to other therapeutic areas, such as neurology and immunology,
demonstrating its versatility and potential to transform clinical practice (Reel et al., 2021; Terranova and
Venkatakrishnan, 2023).

4.2 Drug discovery and development
The integration of multi-omics data has also made significant contributions to drug discovery and development.
By providing a comprehensive view of the molecular landscape of diseases, multi-omics analyses can identify
novel drug targets and elucidate the mechanisms of action of existing drugs. This information is invaluable for the
development of new therapeutic agents and the repurposing of existing drugs for new indications (Turanli et al.,
2019; Demirel et al., 2021).

For example, network-based approaches that integrate multi-omics data have been used to identify key regulatory
nodes in cancer and other diseases, leading to the discovery of potential drug targets (Turanli et al., 2019;
Subramanian et al., 2020). Furthermore, multi-omics data integration can facilitate the optimization of drug dosing
and the identification of biomarkers for patient stratification in clinical trials, thereby improving the efficiency and
success rate of drug development (Kang et al., 2021; Terranova and Venkatakrishnan, 2023).

4.3 Understanding complex diseases
Complex diseases, such as cancer, cardiovascular diseases, and neurodegenerative disorders, are characterized by
intricate molecular interactions and regulatory networks. Multi-omics data integration provides a powerful
approach to unravel these complexities by combining information from different molecular layers. This holistic
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perspective can reveal novel insights into disease etiology, progression, and heterogeneity, which are essential for
the development of effective therapeutic strategies (Olivier et al., 2019; Nicora et al., 2020; Raufaste-Cazavieille
et al., 2022). For instance, in cancer research, multi-omics analyses have uncovered the molecular diversity within
tumors, leading to the identification of distinct molecular subtypes and the development of targeted therapies
(Demirel et al., 2021; Raufaste-Cazavieille et al., 2022). Similarly, in neurodegenerative diseases, multi-omics
data integration has shed light on the molecular mechanisms underlying disease onset and progression, paving the
way for the development of novel diagnostic and therapeutic approaches (Reel et al., 2021; Terranova and
Venkatakrishnan, 2023).The integration of multi-omics data is transforming our understanding of complex
diseases and driving the advancement of precision medicine.

5 Challenges in Multi-Omics Data Integration
5.1 Data heterogeneity
One of the primary challenges in multi-omics data integration is the inherent heterogeneity of the data. Different
omics layers, such as genomics, transcriptomics, proteomics, and metabolomics, each have unique characteristics,
data formats, and scales, making their integration complex. For instance, genomic data is often discrete and
categorical, while proteomic and metabolomic data are typically continuous and quantitative. This disparity
necessitates sophisticated normalization and transformation techniques to harmonize the data before integration
(Misra et al., 2019; Subramanian et al., 2020; Kaur et al., 2021).

Moreover, the nomenclature and identifiers used across different omics datasets can vary significantly,
complicating the process of matching corresponding entities across datasets. For example, gene identifiers in
genomic data may not directly correspond to protein identifiers in proteomic data, requiring extensive
cross-referencing and mapping efforts (Misra et al., 2019). The heterogeneity also extends to the experimental
designs and conditions under which the data are collected, adding another layer of complexity to the integration
process (Bodein et al., 2020).

5.2 Computational complexity
The integration of multi-omics data is computationally intensive due to the high dimensionality and large volume
of the datasets involved. High-throughput technologies generate vast amounts of data, often in the tera- to
peta-byte range, which poses significant challenges for data storage, processing, and analysis (Misra et al., 2019;
Lee et al., 2020). The computational burden is further exacerbated by the need to perform complex operations
such as data cleaning, normalization, and dimensionality reduction before meaningful integration can occur.

Advanced computational methods, including machine learning and deep learning techniques, have been developed
to address these challenges. However, these methods themselves are computationally demanding and require
substantial computational resources and expertise to implement effectively (Nicora et al., 2020; Benkirane et al.,
2023). For instance, deep learning models, while powerful, necessitate extensive training on large datasets, which
can be time-consuming and resource-intensive (Benkirane et al., 2023). Additionally, the integration process often
involves constructing and analyzing complex network models to represent the relationships between different
omics layers. These network models, such as heterogeneous multi-layered networks (HMLNs), are
computationally challenging to build and analyze due to their complexity and the need to infer novel biological
relations from the integrated data (Lee et al., 2020).

5.3 Data interpretation and biological relevance
Even after successful integration, interpreting the integrated multi-omics data and deriving biologically relevant
insights remain significant challenges. The complexity of the integrated data can obscure meaningful biological
signals, making it difficult to draw clear conclusions about the underlying biological processes (Ebrahim et al.,
2016; Subramanian et al., 2020). For example, while integrated data may reveal correlations between different
omics layers, determining the causal relationships and biological significance of these correlations requires careful
analysis and validation (Ebrahim et al., 2016). Furthermore, the interpretation of multi-omics data often relies on
sophisticated visualization techniques to make the data comprehensible. However, current visualization methods
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are still underdeveloped and may not adequately capture the complexity of the integrated data, limiting their
utility in biological interpretation (Miao et al., 2020). Effective visualization tools are essential for identifying
patterns and regularities in the data that can lead to new biological insights (Miao et al., 2020).

Another challenge is the need for biologically interpretable integration strategies that can account for the specific
noise and variability associated with each omics modality. Developing such strategies requires a deep
understanding of the biological context and the specific characteristics of each data type, which can be a daunting
task (Bodein et al., 2020; Miao et al., 2020). Additionally, the integration process must be designed to ensure that
the resulting models are not only accurate but also biologically meaningful and interpretable (Benkirane et al.,
2023).

6 Technological Advances Supporting Integration
6.1 High-throughput sequencing technologies
High-throughput sequencing technologies have revolutionized the field of multi-omics by enabling the generation
of vast amounts of data across various biological layers, including genomics, transcriptomics, proteomics, and
metabolomics. Platforms such as Illumina, PacBio, and 10X Genomics have significantly reduced the cost and
time required for sequencing, making it feasible to conduct large-scale studies that integrate multiple omics
datasets (Miao et al., 2020). These technologies allow for the comprehensive profiling of biological systems,
providing insights into the complex molecular mechanisms underlying health and disease (Wörheide et al., 2021).

The integration of high-throughput sequencing data poses several challenges, including data storage,
normalization, and interpretation. The sheer volume of data generated can reach tera- to peta-byte scales,
necessitating robust computational infrastructure for effective data management (Misra et al., 2019). Additionally,
differences in data formats and nomenclature across various omics layers further complicate the integration
process. Despite these challenges, high-throughput sequencing remains a cornerstone of multi-omics research,
driving advancements in precision medicine and systems biology (Nicora et al., 2020; Wörheide et al., 2021).

6.2 Advanced bioinformatics tools
The rapid accumulation of multi-omics data has spurred the development of advanced bioinformatics tools
designed to facilitate data integration, analysis, and visualization. Tools such as OmicsSuite offer comprehensive
solutions for multi-omics analysis, integrating various statistical and computational methods to handle diverse
data types (Miao et al., 2023). These tools are essential for addressing the complexities associated with
multi-omics data, including high dimensionality, heterogeneity, and the need for accurate biomolecule
identification and data normalization (Misra et al., 2019).

Machine learning and deep learning algorithms have emerged as powerful methods for multi-omics data
integration. These algorithms can capture nonlinear and hierarchical features within the data, providing predictive
insights and uncovering complex relationships between different molecular layers (Kang et al., 2021). For
instance, deep learning has been successfully applied to integrate genomics, transcriptomics, and metabolomics
data, enhancing our understanding of disease mechanisms and aiding in biomarker discovery (Nicora et al., 2020;
Kang et al., 2021).

Network-based methods, such as heterogeneous multi-layered networks (HMLNs), have also proven effective in
representing the hierarchical relationships within biological systems. HMLNs facilitate the integration of diverse
omics data, enabling the inference of novel biological interactions and the establishment of causal
genotype-phenotype associations (Lee et al., 2020). These advanced bioinformatics tools are crucial for
transforming raw multi-omics data into actionable biological insights, driving forward the field of integrative
biology (Ritchie et al., 2015; Subramanian et al., 2020).

6.3 Cloud computing and big data analytics
The advent of cloud computing and big data analytics has provided a scalable and flexible solution for managing
the enormous datasets generated by high-throughput sequencing technologies. Cloud platforms offer significant
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advantages in terms of data storage, processing power, and accessibility, making them ideal for multi-omics data
integration and analysis (Koppad et al., 2021). By leveraging cloud computing, researchers can perform complex
computational tasks without the need for extensive local infrastructure, reducing costs and accelerating the pace of
discovery (Koppad et al., 2021).

Cloud-based bioinformatics applications have been developed to handle various aspects of multi-omics data
analysis, including RNA sequencing, metabolomics, and proteomics. These applications facilitate the integration
and interpretation of phenotypic data, providing a holistic view of biological systems (Koppad et al., 2021).
Additionally, cloud computing enables the sharing and collaboration of large datasets across the global research
community, fostering a more collaborative and open scientific environment (Koppad et al., 2021).

Big data analytics, combined with cloud computing, allows for the efficient processing and analysis of
high-dimensional multi-omics data. Advanced analytical techniques, such as machine learning and deep learning,
can be deployed on cloud platforms to uncover hidden patterns and relationships within the data (Kang et al.,
2021). This integration of cloud computing and big data analytics is essential for overcoming the challenges
associated with multi-omics data, paving the way for new discoveries in systems biology and precision medicine
(Koppad et al., 2021; Kang et al., 2021).

7 Case Studies of Successful Multi-Omics Integration
7.1 Cancer research and treatment
The integration of multi-omics data has significantly advanced cancer research and treatment, providing a
comprehensive understanding of the molecular underpinnings of various cancers. One notable example is the use
of multi-omics approaches to achieve precision medicine in oncology. By integrating genomics, transcriptomics,
proteomics, and metabolomics data, researchers have been able to classify tumors not just by their site of origin
but by their molecular characteristics, leading to the concept of pan-cancer molecular classification (Table 1). This
has opened new therapeutic opportunities and allowed for the identification of prognostic and treatment-specific
biomarkers, which are crucial for personalized therapy (Nicora et al., 2020; Raufaste-Cazavieille et al., 2022).

For instance, the integration of multi-omics data has been pivotal in understanding the spatial and temporal
heterogeneity of tumors. This approach has revealed the incredible complexity and molecular diversity within the
same tumor type, which traditional single-omics studies could not capture. By combining different layers of
biological data, researchers can now dissect the tumor immune environment and host-tumor interactions,
providing insights that guide therapeutic decisions in immuno-oncology (Ning and He, 2021; Raufaste-Cazavieille
et al., 2022).

7.2 Metabolic disease studies
Multi-omics integration has also been instrumental in studying metabolic diseases. The holistic approach of
combining genomics, transcriptomics, proteomics, and metabolomics data allows for a comprehensive
understanding of the metabolic pathways and their regulation. This is particularly important in diseases like
diabetes and obesity, where multiple biological processes are dysregulated.

For example, a metabolomics-centric review highlighted the potential of integrating metabolomics data with other
omics layers to uncover the complex molecular relationships within metabolic diseases. This approach has
enabled researchers to identify novel biomarkers and therapeutic targets, which are essential for developing
effective treatments (Wörheide et al., 2021). The integration of multi-omics data has also facilitated the study of
metabolic fluxes and the interactions between different metabolic pathways, providing deeper insights into disease
mechanisms. Furthermore, the development of computational tools and methods for multi-omics data integration
has advanced the field of metabolic disease research. These tools help in addressing the challenges of data
dimensionality and heterogeneity, enabling researchers to derive meaningful insights from complex datasets
(Subramanian et al., 2020).
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Table 1 Description of different tools for multi-omics integration with their application and their major strength and limits (Adopted
from Raufaste-Cazavieille et al., 2022)

Method Principle Aim Omics element Pros Cons
JIVE Matrix

factorization
Disease subtyping
systemic knowledge,
module detection

Genomics and
epigenomics

Integrate large amount
of data

Sensitive tooutliers and
missing
values

NMF - Disease subtyping
module detection,
biomarker discovery

Genomics and
epigenomics

Filtering weak
signal.Integrate large
amount of data.
Detection of cluster of
small size

Time and memory
consuming. Underperforming
on missing values

nNMF - - - - -
jNMF - - - - -

intNMF - - - - -
SLIDE - Disease subtyping,

module detection,
biomarker discovery

Genomics,epigenom
ics and proteomics

Integrate large amount
of data

Underperforming with
missing values. Optimum
solution is not guaranteed

MALA Logicdata mining Sample classification Genomics and
transcriptomics

Works well on
experimental data
Integrate large amount
of data

Phenotype number must be
delivered with data. Sensitive
to missing values

iCluster Gaussian latent
variable model

- Genomics,epigenom
ics and
transcriptomics

- Needs to test a large amount
of solution tofind the most
relevant

iCluster+ Generalized
linear regression

Disease subtyping Genomics,transcript
omics, proteomics
and epigenomics

Handle missing values No evaluation of statistical
significancefor selected
features

iClusterBayes Bayesian
integrative
clustering

Biomarker discovery Genomics,transcript
omics, and
epigenomics

Good performance in
thepresence of
explicative data

Underperform with outliers

MOFA Bayesian factor
analysis

Biomarker discovery,
systemic knowledge

Proteomics,metabolo
mics and lipidomics

Handle well missing
values

Linear model can miss linear
relation

MOFA+ - - Genomics and
epigenomics

The use of continuous
learning
enabling MOFA to
recover different
trajectory

Need of multi-moda
measurement for the same set
of cells

Table caption: JIVE:joint and individual variation explained; (n,j,int) NMF:(network,joint,integrative) non-negative matrix
factoization; SLIDE: structural learning and integrative decomposition; MALA: micro array logic analyzer; MOFA:multi-omics
factor analysis (Adopted from Raufaste-Cazavieille et al., 2022)

7.3 Microbiome and host interactions
The study of microbiome and host interactions has greatly benefited from multi-omics integration. By combining
metagenomics, metatranscriptomics, metaproteomics, and metabolomics data, researchers can gain a
comprehensive view of microbial communities and their functions. This approach has been particularly useful in
understanding the role of the microbiome in health and disease.

One successful example is the use of dynamic Bayesian networks (DBNs) to integrate multi-omics data from
longitudinal microbiome studies. This method has been applied to data collected from patients with inflammatory
bowel disease (IBD), allowing researchers to identify known and novel interactions between microbial taxa, their
genes, metabolites, and host genes. The resulting models have provided insights into the temporal interactions and
their impact on host expression, which are crucial for understanding disease progression and developing targeted
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therapies (Ruiz-Perez et al., 2019). Additionally, multi-omics integration has been used to study the role of
hydrogen sulfide in colon cancer. By combining 16S rRNA microbial community data with metabolomics and
metabolic models, researchers have been able to track the metabolic flux of hydrogen sulfide and identify
microbial interactions involved in its production.

8 Concluding Remarks
The integration of multi-omics data has emerged as a powerful approach to understanding complex biological
systems. Key findings from recent research highlight the significant advancements and persistent challenges in
this field. High-throughput technologies have enabled the generation of vast amounts of data across various omics
layers, including genomics, transcriptomics, proteomics, and metabolomics, which can be integrated to provide a
holistic view of biological processes. However, the integration of these diverse datasets remains challenging due
to issues such as data heterogeneity, differences in nomenclature, and the need for robust computational methods.
Recent studies have developed various tools and methodologies to address these challenges, focusing on
applications such as disease subtyping, biomarker discovery, and precision medicine. Despite these advancements,
there is still a need for standardized analytical pipelines and improved data visualization techniques to fully realize
the potential of multi-omics integration.

Future research in multi-omics data integration is likely to focus on several key areas. One promising direction is
the development of more sophisticated computational methods, including deep learning algorithms, which have
shown great potential in capturing complex, nonlinear relationships within multi-omics data. Additionally, there is
a growing interest in integrating single-cell multi-omics data, which can provide unprecedented insights into
cellular heterogeneity and the molecular mechanisms underlying various biological processes. Another important
area is the improvement of data visualization techniques, which are crucial for interpreting the results of
multi-omics analyses and making them accessible to a broader scientific community. Furthermore, there is a need
for more comprehensive and standardized data repositories and visualization portals to facilitate data sharing and
collaboration among researchers.

To overcome the challenges associated with multi-omics data integration, several recommendations can be made.
The development of standardized protocols for data cleaning, normalization, and integration is essential to ensure
the consistency and reproducibility of multi-omics studies. The adoption of advanced computational methods,
such as deep learning and network-based approaches, can help to address the complexity and high dimensionality
of multi-omics data. Third, improving data visualization techniques and developing user-friendly tools for data
exploration and interpretation will be crucial for making multi-omics analyses more accessible and actionable.
Fostering collaboration and data sharing among researchers through the establishment of comprehensive data
repositories and standardized analytical pipelines will be key to advancing the field of multi-omics data
integration.
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