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Abstract This study summarizes various causal inference methods for biological network analysis, including Bayesian networks,
Granger causality, and structural equation modeling (SEM). We explored the application of these methods in integrating multiple
omics data and how to overcome the challenges posed by high-dimensional data. Especially, the application of causal inference in
disease network analysis demonstrates its potential in identifying key genes, revealing disease mechanisms, and promoting precision
medicine. We also evaluated the latest developed computing tools and open-source platforms, which make large-scale data
processing more efficient and user-friendly. In the future, the development of causal inference will further rely on the integration of
emerging technologies such as machine learning and single-cell omics to promote a deeper understanding of complex disease
mechanisms.
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1 Introduction
Biological networks represent the complex interactions between biological entities, such as genes, proteins, or
metabolites, within a system. These networks include gene regulatory networks (GRNs), metabolic networks, and
protein-protein interaction networks, all of which are essential for maintaining cellular functions. High-throughput
technologies like next-generation sequencing, mass spectrometry, and single-cell RNA sequencing (scRNA-seq)
have facilitated the reconstruction of these networks by enabling the collection of large-scale biological data. The
analysis of such data helps reveal the structure and function of biological networks, providing critical insights into
cellular processes and disease mechanisms. However, the sheer complexity of these networks, their dynamic
nature, and their non-linear interactions pose significant challenges to network inference and analysis (Shojaee
and Huang, 2023). Accurate modeling of these networks is crucial for understanding biological systems and
developing new therapeutic strategies.

Causal inference is critical for distinguishing between correlation and true cause-effect relationships in biological
networks. Unlike correlation-based methods, which only identify associations, causal inference provides insights
into how biological systems respond to perturbations, such as gene knockouts or drug treatments. This is
particularly important in understanding disease progression and treatment responses, as well as identifying
potential therapeutic targets. Recent advances in causal inference methods, including Granger causality and
Bayesian networks, have enhanced our ability to analyze high-dimensional biological data and uncover the
underlying causal mechanisms. These methods have been applied successfully to infer gene regulatory
interactions, identify key regulators, and predict the outcomes of therapeutic interventions (Ahmed et al., 2020).
As a result, causal inference is a valuable tool in systems biology, particularly in precision medicine.

This study provides an in-depth analysis of the latest advances in causal inference methods in biological network
analysis: exploring the latest algorithmic innovations, including algorithms that address nonlinear interactions and
integrate multi omics data; Secondly, investigate the application of these methods in disease research, particularly
in identifying therapeutic targets for complex diseases such as cancer and neurodegenerative diseases; Finally, we
will discuss the challenges and future directions faced in this rapidly developing field, such as processing
high-dimensional, noisy datasets and integrating dynamic, time-resolved data, with the aim of advancing
biomedical research.
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2 Overview of Biological Network Analysis
2.1 Types of biological networks
Biological networks are used to represent various interactions within a living organism, encompassing multiple
types of relationships. Gene Regulatory Networks (GRNs), which model how genes interact to control gene
expression, are central to understanding cellular processes. Protein-Protein Interaction (PPI) Networks track
physical interactions between proteins, revealing key connections in signal transduction and cellular function.
Metabolic Networks illustrate the biochemical reactions within cells, showing how different molecules are
converted by enzymes to maintain life (Schmitt et al., 2023).

Signaling Networks describe the pathways through which cells respond to external stimuli, and Phenotype
Networks link gene variants to observable traits. Each network type provides insights into different aspects of
biology, from cellular metabolism to complex traits and diseases. Recent technological advances in
high-throughput omics, including transcriptomics, proteomics, and metabolomics, allow for large-scale biological
data collection. This data has been pivotal in reconstructing these networks to study diseases such as cancer and
Alzheimer's disease (Shojaee and Huang, 2023; Hill et al., 2016). However, the high-dimensionality and dynamic
nature of biological networks make their analysis complex, requiring sophisticated computational methods to
model and understand their intricacies (Furqan and Siyal, 2016; Buetti-Dinh et al., 2020).

2.2 Commonly used network analysis techniques
Several techniques are commonly used in the analysis of biological networks. Graph-theoretical approaches form
the backbone of most network analyses, where nodes represent genes, proteins, or metabolites, and edges
represent interactions between them. These methods are powerful for identifying key nodes (hubs) or pathways
that are central to network integrity. Clustering algorithms, such as hierarchical clustering and k-means, group
similar nodes to find functional modules within networks. Bayesian Networks and Markov Models offer
probabilistic frameworks for inferring causal relationships between components, which are especially useful in
gene regulatory and metabolic network analyses. Granger Causality is another method frequently applied to infer
cause-effect relationships in time-series data, particularly useful in dynamic biological processes like gene
expression regulation.

Additionally, machine learning techniques, such as deep learning and graph neural networks, have gained traction
in recent years due to their ability to handle large and complex datasets. These methods can predict regulatory
relationships, allowing for more accurate network reconstructions, especially in large-scale transcriptomic and
proteomic studies (Furqan and Siyal, 2016; Monneret et al., 2017). However, each technique has limitations that
need to be addressed depending on the type of biological data and the specific questions being asked.

2.3 Limitations of correlation-based approaches
Correlation-based approaches, while commonly used in biological network analysis, have significant limitations
in inferring causal relationships. These methods primarily capture associations between variables, which do not
necessarily imply a direct cause-and-effect relationship. For instance, two genes may exhibit a high correlation in
expression levels, but this may be driven by a common upstream regulator rather than a direct interaction.
Furthermore, correlation-based methods cannot account for confounding variables, leading to false positives or
misinterpretations. These approaches are also limited in their ability to handle non-linear relationships and
dynamic changes over time, which are critical features of biological networks. For example, gene expression
patterns can be highly context-dependent, changing in response to environmental stimuli or developmental stages,
which simple correlations fail to capture.

3 Fundamentals of Causal Inference
3.1 Definition and concepts of causality
Causality, in the context of biological networks, refers to the influence one biological component (such as a gene
or protein) exerts over another. A causal relationship implies that changes in one entity (the cause) directly lead to
changes in another (the effect), often under experimental or observational conditions. This concept is crucial in
biological research for understanding complex pathways, disease mechanisms, and potential therapeutic
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interventions (Fan et al., 2021). For example, in gene regulatory networks (GRNs), causal inference aims to
identify how specific genes regulate others to control cellular functions. Unlike mere correlations, which capture
associations, causal inference establishes directional and mechanistic links, allowing scientists to predict the
outcomes of interventions such as gene knockouts or drug treatments (Ribeiro et al., 2016). Several computational
approaches, including Bayesian networks and Granger causality, have been developed to model and infer
causality in high-dimensional biological systems (Ahmed et al., 2020).

3.2 Difference between causality and correlation
3.2.1 Conceptual differences
Correlation refers to a statistical relationship between two variables, indicating that they change together, but not
necessarily that one causes the other. In contrast, causality establishes that one variable directly influences the
other. In biological systems, two genes may be correlated due to shared regulatory mechanisms but might not
have a direct cause-effect relationship. Causal inference methods, such as Mendelian randomization and directed
acyclic graphs (DAGs), seek to identify these directional links (Furqan and Siyal, 2016).

3.2.2 Implications for biological research
Understanding causality is fundamental for biological research as it allows researchers to determine the effect of
gene mutations, protein interactions, or external factors like drug treatments. Correlation-based methods are
limited because they do not provide insights into how changes in one gene affect another. Causal inference
techniques enable scientists to make predictions about biological processes, guiding interventions such as gene
editing or drug discovery. For instance, inferring causality between genes in cancer pathways can lead to targeted
therapies aimed at inhibiting tumor growth (Figure 1) (Hill et al., 2016).

Figure 1 Aggregate submission networks for the experimental data network inference task (SC1A) (Adopted from Hill et al., 2016)
Image caption: (a) The aggregate submission network for cell line MCF7 under HGF stimulation. Line thickness corresponds to edge
weight (number of edges shown set to equal number of nodes). To determine which edges were present and not present in the
aggregate prior network, we placed a threshold of 0.1 on edge weights. Green and blue nodes represent descendants of mTOR in the
network shown (Figure 1b, c and supplementary Figure 1). The network was generated using Cytoscape40. (b) Principal component
analysis applied to edge scores for the 32 context-specific aggregate submission networks (Online Methods). The key regulatory
factors and their interactions with downstream genes or proteins identified through network modeling. This approach helps
researchers to identify important cancer-related biomarkers, thereby supporting precision medicine (Adopted from Hill et al., 2016)

3.2.3 Common misinterpretations
A common misconception is that a high correlation between two variables implies a causal relationship. This
assumption often leads to incorrect conclusions in biological research. For example, two genes might be
co-expressed, suggesting a correlation, but this could be due to a third gene influencing both. Mistaking
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correlation for causality can lead to false hypotheses about biological mechanisms, which could hinder therapeutic
developments. Robust causal inference approaches, such as Granger causality or structural equation modeling, are
essential to avoid such errors (Lecca, 2021).

3.3 Challenges in causal inference for complex systems
Inferring causality in complex biological systems poses several challenges. First, biological networks are often
high-dimensional, with a large number of genes, proteins, or metabolites interacting in a nonlinear and dynamic
manner. Traditional statistical methods struggle with such complexity, leading to issues with scalability and
computational efficiency. Another challenge is the presence of latent variables or hidden confounders, which can
obscure true causal relationships. For example, in gene regulatory networks, unmeasured external factors might
influence the expression of multiple genes, creating spurious causal links (Monneret et al., 2017). Additionally,
observational data, which is commonly used in biological studies, often lacks the controlled experimental
conditions needed for strong causal inference. Experimental interventions like gene knockouts help address this
but are not always feasible. Advances in computational methods, such as machine learning and graph neural
networks, have been proposed to overcome these challenges, providing more accurate and scalable causal
inference tools for biological research (Zhang et al., 2022).

4. Causal Inference Methods in Biological Network Analysis
4.1 Bayesian networks
4.1.1 Basic principles
Bayesian networks (BNs) are probabilistic graphical models that describe relationships between variables through
conditional dependencies. They consist of nodes, representing biological entities such as genes or proteins, and
directed edges that indicate the probabilistic causal relationships between them. The core concept of Bayesian
networks is derived from Bayes' Theorem, which updates the probability of a hypothesis as new data becomes
available. Bayesian networks are particularly effective for modeling complex systems where uncertainty and
variability play significant roles, such as in biological networks where multiple genes interact to regulate cellular
processes. A Bayesian network is represented as a directed acyclic graph (DAG), which models the hierarchical
nature of gene interactions or signal transduction pathways.

For biological network analysis, Bayesian networks are powerful tools due to their ability to incorporate prior
knowledge and to integrate different types of data, such as gene expression and protein interaction data. Bayesian
inference methods are also capable of handling noisy and incomplete data, which is a common issue in
high-throughput biological experiments. This ability to integrate diverse data sources and account for uncertainty
makes Bayesian networks a valuable approach for uncovering hidden patterns in biological systems (Howey et al.,
2020).

4.1.2 Applications in gene regulatory networks
In the realm of gene regulatory networks (GRNs), Bayesian networks are widely used to infer causal relationships
between genes based on transcriptomic data. For instance, Bayesian approaches have been employed to predict
how transcription factors regulate gene expression, revealing important insights into the molecular mechanisms
that control cell behavior. Bayesian methods have been particularly useful in diseases such as cancer, where
understanding how certain genes control others can lead to the identification of therapeutic targets. One key
strength of Bayesian networks is their capacity to integrate different types of high-throughput data (e.g.,
transcriptomics, proteomics, and metabolomics) to construct a more comprehensive model of biological
interactions. This integrated approach helps in identifying key regulatory genes and pathways that might not be
evident from individual datasets. For example, studies using multi-omics datasets have applied Bayesian networks
to explore cancer progression, identifying potential biomarkers and therapeutic targets by analyzing how genes
interact within complex regulatory networks (Wang et al., 2018).

4.1.3 Limitations and challenges
Despite the advantages of Bayesian networks, several limitations hinder their widespread application in biological
research. The first major limitation is their computational complexity. The number of possible structures for a
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Bayesian network grows exponentially with the number of variables (genes or proteins), making the task of
learning the network structure from data computationally challenging, particularly for large biological systems. As
a result, traditional Bayesian methods often struggle to scale efficiently to genome-wide datasets, which can
contain tens of thousands of genes. Moreover, Bayesian networks require accurate prior knowledge to guide the
inference process. In many biological contexts, such prior knowledge is incomplete or uncertain, leading to
potential inaccuracies in the inferred network. Another challenge is the inability of Bayesian networks to model
feedback loops and cyclic interactions, which are common in biological systems such as signal transduction
pathways. Additionally, the assumption of acyclic relationships can limit the capacity of Bayesian networks to
capture dynamic processes that involve recurrent interactions over time.

4.2 Granger causality
Granger causality is a statistical approach used to determine whether one time series can predict another, thereby
implying a causal relationship. In the context of biological networks, it is particularly useful for analyzing
time-series gene expression data to uncover regulatory relationships between genes. The fundamental premise of
Granger causality is that if the past values of one variable (e.g., gene expression) contain information that helps
predict the future values of another variable, then the first variable is said to Granger-cause the second. This
method has been widely applied in gene regulatory network (GRN) analysis, particularly in dynamic systems such
as developmental biology, where gene expression levels change over time in response to various signals and
environmental conditions. Traditional Granger causality operates under the assumption of linear relationships
between variables, which may limit its application in the inherently nonlinear nature of biological networks.
However, several extensions, such as nonlinear Granger causality and kernel-based approaches, have been
developed to overcome this limitation (Furqan and Siyal, 2016).

Granger causality has proven useful in a variety of biological applications. For instance, in neuroscience, it has
been applied to identify connectivity between different brain regions by analyzing neural time-series data,
providing insights into how various areas of the brain communicate during cognitive tasks. In gene regulatory
networks, Granger causality can be used to infer which genes are likely to influence others over time, providing a
dynamic view of gene regulation that is not captured by static network models. However, one limitation of
Granger causality in biological network analysis is its sensitivity to noise and high-dimensional datasets—both
common features in biological data.

The number of potential interactions between genes can quickly exceed the available time points in the data,
leading to overfitting and false positives. To address this, newer methods such as regularized Granger causality
and ensemble-based approaches have been developed, which improve the robustness and scalability of the method
by incorporating penalization techniques or aggregating multiple models to reduce false discoveries (Finkle et al.,
2018).

4.3 Structural equation modeling (SEM)
Structural Equation Modeling (SEM) is a powerful statistical technique used to analyze complex relationships
between observed and latent variables. SEM is often employed in biological network analysis to infer direct and
indirect effects among multiple interacting entities, such as genes or proteins. SEM combines aspects of factor
analysis and multiple regression, allowing for the modeling of complex dependencies and feedback loops that are
common in biological systems. One of the key strengths of SEM is its ability to handle both observed (measured)
and latent variables (unobserved factors inferred from the data), making it particularly useful in biological studies
where not all relevant factors can be directly measured, such as in gene regulation studies. In SEM, relationships
are represented as a network of equations that describe how each variable depends on others, capturing the causal
pathways that underlie biological processes (Howey et al., 2021).

In biological research, SEM has been applied to a wide range of problems, from understanding gene-environment
interactions to mapping signaling pathways in cancer. For example, SEM can be used to model how genetic
mutations influence gene expression, which in turn affects cellular behavior and contributes to disease progression.
This method is particularly valuable in integrative genomics, where researchers aim to combine data from
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different molecular layers (e.g., genomics, transcriptomics, and proteomics) to build comprehensive models of
cellular function. SEM is also advantageous in situations where researchers wish to distinguish between direct
effects (e.g., the effect of a transcription factor on gene expression) and indirect effects (e.g., the effect of a gene
through an intermediate protein). Despite its strengths, SEM faces challenges, particularly in the requirement for
large sample sizes to achieve reliable estimates, which can be a limitation in biological studies where obtaining
large datasets may be difficult. Moreover, SEM models are sensitive to model misspecification, meaning that
incorrect assumptions about the relationships between variables can lead to biased results. Nonetheless, with
careful application and validation, SEM remains a versatile and powerful tool for uncovering causal relationships
in biological systems (Lu et al., 2019).

5 Integration of Causal Inference with High-Throughput Data
5.1 Challenges with high-throughput data
High-throughput technologies, such as next-generation sequencing (NGS), proteomics, and metabolomics,
generate large-scale datasets that offer unprecedented opportunities to study biological systems. However,
integrating these diverse datasets presents significant challenges. One major issue is the heterogeneity of omics
data, where each data type (e.g., genomics, transcriptomics, epigenomics) has its own specific structure, scale, and
distribution. For example, gene expression data are often continuous, while mutation data are categorical,
complicating their integration. Additionally, high-throughput datasets are often noisy, incomplete, and subject to
batch effects, which can obscure true biological signals and make causal inference more difficult. Another
challenge is the sheer dimensionality of these datasets. With thousands of genes, proteins, and metabolites
measured in each sample, the curse of dimensionality becomes a critical issue, as traditional statistical methods
may become computationally intractable or prone to overfitting when applied to such large datasets (Miao et al.,
2021).

Moreover, integrating data across multiple platforms requires sophisticated techniques to normalize and
harmonize the datasets, ensuring that the information is comparable across different data types. The complexity of
biological networks, with their feedback loops and nonlinear interactions, adds another layer of difficulty,
requiring advanced models capable of handling dynamic and multi-level interactions.

5.2 Approaches for data integration
Various computational methods have been developed to address the challenges of integrating high-throughput
omics data in causal inference. One common approach is multi-layered network modeling, where each omics
dataset is treated as a separate layer of a larger network, and relationships between variables across layers are
inferred using probabilistic models. This approach captures the hierarchical nature of biological systems, allowing
for a more comprehensive understanding of genotype-phenotype associations and the environmental impact on
organisms (Lee et al., 2020). Bayesian networks are another popular method, as they can integrate prior
knowledge and probabilistically infer causal relationships while accounting for uncertainty. Machine learning
methods, particularly deep learning models, have also been applied for data integration. These methods excel at
extracting features from high-dimensional data and can capture complex, nonlinear relationships between
variables.

Techniques like matrix factorization and graph-based models have been used to reduce the dimensionality of
multi-omics data and highlight the most important features for downstream causal analysis (Nicora et al., 2020).
Additionally, causal inference techniques like Mendelian randomization are frequently employed, using genetic
variants as instrumental variables to infer the causal effect of exposures on outcomes across multiple omics layers
(Zhao, 2023).

5.3 Case studies in omics data
The integration of causal inference with multi-omics data has shown considerable promise in precision medicine,
particularly in oncology. For instance, the Omics Integrator tool has been used to combine transcriptomics,
proteomics, and metabolomics data to reconstruct molecular networks involved in diseases such as glioblastoma
and Huntington’s disease. This approach has identified novel pathways and key regulatory nodes that are
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implicated in disease progression, providing potential targets for therapeutic intervention (Tuncbag et al., 2016).
In another study, multi-omics integration was applied to classify subtypes of cancer, revealing that patients with
similar molecular profiles had distinct survival outcomes. By integrating gene expression, DNA methylation, and
mutation data, researchers were able to identify new cancer subtypes that were previously indistinguishable using
single-omics approaches (Figure 2) (Nguyen et al., 2017).

Figure 2 Summary of omics integrator (Adopted from Nguyen et al., 2017)
Image caption: (A) Garnet identifies transcription factors (triangles) associated with mRNA expression changes by incorporating
epigenetic changes nearby expressed genes, scanning those regions for putative transcription factor binding sites and then regressing
transcription factor affinity scores against gene expression changes. The result is a set of transcription factor candidates and the
relative confidence that they are responsible for the observed expression changes. (B) Forest identifies a condition-specific functional
sub-network from user data and a confidence-weighted interactome. The network can be composed of protein-protein,
protein-metabolite or other interactions. The set of omic hits are composed of the TFs obtained from Garnet (triangles) merged with
other types of hits such as differentially expressed proteins, significantly phosphorylated proteins, metabolites, etc. (circles). (C)
Finally, the confidence-weighted interactome is integrated with the ‘omic’ hits using the prize-collecting Steiner forest algorithm,
where the data is either connected directly or via intermediate nodes, called ‘Steiner nodes’ (Adopted from Nguyen et al., 2017)

Additionally, Mendelian randomization has been used to integrate genomics with other omics data, enabling the
discovery of causal relationships between genetic variants and complex traits such as diabetes and cardiovascular
disease (Correa-Aguila et al., 2022). These case studies highlight the importance of integrating multiple omics
layers to better understand disease mechanisms and improve clinical decision-making.

6 Applications in Disease Network Analysis
6.1 Identifying causal genes and pathways
Identifying causal genes and pathways is a fundamental challenge in understanding the molecular mechanisms
underlying diseases. With the rise of high-throughput omics technologies, researchers can generate vast amounts
of genomic, transcriptomic, proteomic, and metabolomic data, making it possible to explore causal relationships
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on a large scale. Causal inference methods such as Mendelian randomization, Bayesian networks, and Granger
causality are frequently applied to prioritize genes and pathways involved in disease processes. For example,
causal inference algorithms like Tumour-specific Causal Inference (TCI) have been used to identify somatic
genome alterations that affect gene expression in cancer. TCI was applied to data from The Cancer Genome Atlas
(TCGA) to identify causal gene modules in breast cancer and glioblastoma, revealing subgroups of patients with
distinct pathway aberrations and survival outcomes (Xue et al., 2019). Other methods, such as deep learning
models, have been used to infer gene relationships and causality from single-cell RNA sequencing data, helping to
identify disease-related genes more accurately than traditional methods (Yuan and Bar-Joseph, 2018). By
leveraging these computational approaches, researchers can identify genes that drive disease progression, such as
transcription factors and signaling molecules, providing valuable targets for therapeutic interventions.

6.2 Understanding disease mechanisms
Causal inference methods have significantly advanced our understanding of disease mechanisms by revealing how
genetic and environmental factors interact to cause disease. In complex diseases like cancer, Alzheimer's disease,
and diabetes, multiple genes and pathways contribute to disease onset and progression. Network-based approaches,
such as Bayesian networks and multi-layered network models, have been employed to construct gene regulatory
networks and infer the causal relationships between genes and phenotypes. For example, a causal network
inference algorithm was applied to gene transcriptional data from A549 cells exposed to glucocorticoids,
identifying key regulatory genes and their effects on gene expression patterns related to cellular stress responses
(Lu et al., 2019). Another study focused on the molecular mechanisms of Alzheimer’s disease, constructing a
differential gene network by integrating omics data, which revealed the role of epigenetic regulation and
ribosomal processes in disease progression (Park et al., 2017).

7 Advances in Computational Tools and Software
7.1 Recent developments in software for causal inference
Recent advances in computational tools for causal inference have led to the development of highly efficient,
specialized software designed to handle large-scale biological datasets. Tools like PREMER (Parallel Reverse
Engineering with Mutual Information and Entropy Reduction) use information theory to infer biological network
structures, enabling users to distinguish between direct and indirect interactions within networks and to determine
causal links. PREMER, developed with OpenMP for parallel execution, alleviates computational bottlenecks,
especially in large-scale network inference problems, and supports multiple operating systems and programming
interfaces such as Python and MATLAB (Villaverde et al., 2018).

Another notable development is SIGNET, a software package designed to infer gene regulatory networks using
large-scale transcriptomic and genotypic data. SIGNET incorporates genotypic variants as instrumental variables
to infer causal relationships across the entire transcriptome, making it particularly suitable for high-dimensional
genomic data. By leveraging parallel computing environments, SIGNET is optimized for handling
computationally intensive tasks and provides an interactive interface for parameter tuning and network
visualization (Zhang et al., 2023).

In addition, the netZoo platform, developed for the inference and analysis of multi-omics biological networks,
integrates multiple omics data sources and provides tools to infer gene regulatory networks and conduct
differential analyses. This platform is optimized for multi-tiered cancer data analysis, such as from the Cancer
Cell Line Encyclopedia (CCLE), and helps identify novel regulatory elements involved in cancer development
(Guebila et al., 2022).

7.2 User-friendly tools for biologists
As more biologists seek to conduct causal inference without deep expertise in computational biology, the demand
for user-friendly tools has risen. Tools like CausalR have been developed to bridge this gap. CausalR is a causal
network analysis platform implemented in R that allows for easy integration with popular software such as
Cytoscape. This platform provides a user-friendly interface for biologists, enabling them to perform causal
inference on genome-scale data without needing advanced programming skills (Bradley and Barrett, 2017).
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SEMgraph, another tool, brings structural equation modeling (SEM) into the biological domain, offering a robust
interface for modeling complex biological systems. This R package allows users to manage high-throughput data
as multivariate networks and interpret causal effects with ease. Its user-friendly interface is designed for
researchers who need scalable, reproducible, and interpretable results without the need for advanced coding
expertise (Grassi et al., 2022).

Additionally, CIMLA is a recently developed tool that enhances causal inference by integrating machine learning
and feature attribution models to discover condition-dependent causal relationships in gene regulatory networks.
CIMLA’s intuitive design allows researchers to focus on the biological interpretation of gene interactions while
the tool handles computational complexity (Dibaeinia and Sinha, 2023).

7.3 Open-source platforms and resources
Open-source platforms have become essential for ensuring broad access to cutting-edge causal inference tools.
One such example is GReNaDIne, a Python-based library that provides users with a comprehensive set of 18 gene
regulatory network inference methods. GReNaDIne allows users to preprocess RNA-seq and microarray data,
perform causal inference, and combine outputs from multiple methods into robust ensemble models. The
open-source nature of GReNaDIne makes it a valuable toolkit for the systems biology community, supporting
reproducibility and collaboration through its GitLab repository (Schmitt et al., 2023). OpenMEE is another
open-source platform tailored for meta-analysis and meta-regression, widely used in ecological and evolutionary
biology. Its open-source, cross-platform design enables researchers to implement advanced statistical
functionalities without requiring expertise in R programming, making it highly accessible to a broad range of
researchers (Wallace et al., 2017).

8 Concluding Remarks
This review has highlighted significant advances in the field of causal inference for biological network analysis.
Causal inference methods, such as Bayesian networks, Granger causality, and Structural Equation Modeling
(SEM), have proven invaluable in elucidating the complex relationships between genes, proteins, and other
biological entities. The integration of causal inference with high-throughput data, especially from multi-omics
platforms, allows researchers to uncover direct and indirect relationships that inform our understanding of disease
mechanisms. These techniques have demonstrated their ability to provide insights into gene regulatory networks,
signaling pathways, and disease progression. Additionally, software tools and computational platforms have
become increasingly sophisticated, enabling the analysis of large-scale datasets and improving the accuracy of
causal inferences in biological contexts.

The future of causal inference in biological network analysis will likely involve continued integration with
emerging technologies, such as single-cell sequencing and spatial transcriptomics. These technologies generate
complex datasets that require new methods for causal inference capable of handling spatio-temporal dynamics and
heterogeneous data sources. Further advances in machine learning and artificial intelligence, particularly in deep
learning models, will also play a crucial role in refining causal inference approaches. Deep learning has the
potential to uncover latent causal structures and provide more accurate predictions of gene interactions. Moreover,
hybrid methods that combine experimental interventions, such as CRISPR-based gene editing, with computational
inference are expected to provide more robust models of causality in biological systems.

To advance the field of biological network analysis, researchers should prioritize the integration of multiple causal
inference methods. This allows for more robust conclusions, particularly when analyzing complex diseases like
cancer or neurodegenerative disorders. Bayesian networks, combined with methods like Mendelian randomization,
should be employed to better understand the causal relationships between genes, proteins, and metabolites.
Furthermore, the use of open-source tools and platforms such as GReNaDIne and PREMER should be encouraged
to promote reproducibility and collaboration across the scientific community. Finally, there is a need for more
user-friendly tools designed for biologists without computational expertise, as this will enhance the accessibility
of causal inference methods and foster more widespread adoption in the research community.
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