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Abstract Genomic selection (GS), as a key technology in modern breeding programs, has significantly advanced crop and livestock
breeding. By integrating quantitative genetics and genome prediction models, GS has improved the accuracy of predicting complex
traits and accelerated the cultivation of high-yield and stress resistant varieties. This study explores the historical evolution,
technological innovation, and practical applications of genome selection in breeding. It analyzes the advantages brought by
innovative technologies such as high-density genotyping and whole genome prediction, especially their widespread application in
multi trait and multi environment models. Although GS has great potential in modern breeding, it still faces challenges such as
genotype environment interaction, prediction accuracy, and data complexity. I hope to summarize the latest progress of GS through
case analysis and provide direction for future research, in order to promote the application of quantitative genetics and genome
selection in a wider range of fields, and provide support for global food security and sustainable agricultural development.
Keywords Genomic selection; Quantitative genetics; Genomic prediction; Marker-assisted selection; Complex traits

1 Introduction
Genomic Selection (GS) has emerged as a significant breakthrough in the field of breeding in recent years. Unlike
traditional marker-assisted selection, which relies on a limited number of markers associated with specific traits,
GS utilizes genome-wide marker data to predict the breeding values of individuals. By estimating the effects of all
markers comprehensively, GS captures the small-effect alleles that influence complex traits, thereby improving
breeding efficiency and accuracy (Meuwissen et al., 2016; Crossa et al., 2017). With advances in high-density
genotyping technologies, GS has been widely applied in both plant and animal breeding, significantly accelerating
genetic improvement (Heslot et al., 2015; Rice and Lipka, 2021).

GS plays a crucial role in modern breeding programs. By integrating genome-wide marker information, GS
significantly increases selection accuracy, shortens breeding cycles, and enhances genetic gains per unit time. This
method is particularly effective in improving quantitative traits controlled by multiple genes, especially in
addressing challenges related to climate change and enhancing crop yields and livestock production (Liu et al.,
2019; Merrick et al., 2022). Additionally, GS reduces the need for large-scale phenotyping, lowers breeding costs,
and, through advanced statistical models and high-throughput phenotyping technologies, improves breeding
efficiency (Larkin et al., 2019; Cappetta et al., 2020).

This study systematically reviews the latest developments and innovations in the field of GS. By analyzing the
development history, various application models, and methods of GS, this study explores the actual effects of GS
in different breeding programs and evaluates its impact on genetic gain and breeding efficiency. In addition,
challenges and limitations in the implementation of GS were identified, and possible solutions to address these
issues were proposed. In the future, GS is expected to continue promoting the sustainable development of global
agriculture by integrating emerging technologies and improving prediction accuracy.

2 Evolution of Genomic Selection
2.1 Historical development of GS
The concept of genomic selection (GS) was first introduced by Meuwissen et al. in 2001, marking a significant
departure from traditional marker-assisted selection (MAS) methods. Prior to this, agricultural genomics primarily
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focused on detecting quantitative trait loci (QTL) using experimental crosses or existing family relationships. The
innovative approach proposed by Meuwissen et al. required a high density of genomic markers to ensure that
every QTL affecting a relevant trait would be in linkage disequilibrium with at least one marker. This allowed for
selection decisions to be based on the joint merit of all markers across the genome, rather than a few significant
ones. This breakthrough laid the foundation for the rapid advancements in GS, particularly in livestock breeding,
where it has led to unprecedented improvements in genetic gain per generation (Koning et al., 2016; Meuwissen et
al., 2016).

2.2 Early applications in crop and livestock breeding
The initial applications of GS were predominantly in livestock breeding, driven by the high individual value of
livestock and the significant reduction in generation intervals achievable through GS. Dairy cattle breeding, in
particular, saw a dramatic shift from traditional progeny testing to GS, resulting in a doubling of genetic
improvement per generation (Koning et al., 2016; Meuwissen et al., 2016). The success in livestock spurred
interest in applying GS to crop breeding. Early applications in crops such as rice, maize, and wheat have
demonstrated that GS has resulted in significant genetic gains, thanks to the large international efforts led by
organizations like the International Maize and Wheat Improvement Center (CIMMYT) (Crossa et al., 2017; Li
and Jiong, 2022).. The integration of GS in plant breeding has been further enhanced by advances in field
management, heritability estimation, and the development of robust GS models that account for
genotype-by-environment interactions (Burri, 2017; Xu et al., 2019).

2.3 Technological advances driving GS evolution
The evolution of GS has been propelled by several key technological advancements. The development of
high-density single nucleotide polymorphism (SNP) chips around 2006 made it feasible to routinely genotype
animals and plants for thousands of markers in a cost-effective manner. This was complemented by improvements
in statistical modeling approaches, including the Bayesian methods (BayesA and BayesB) introduced by
Meuwissen et al., which have been extensively refined over the years (Koning et al., 2016). The advent of
high-throughput sequencing technologies has further revolutionized GS by enabling the use of whole-genome
sequence data, which offers higher accuracy in predicting breeding values (Meuwissen et al., 2016; VanRaden,
2020). Additionally, the integration of new technologies such as hyperspectral imaging and digital breeding
platforms is poised to further enhance the efficiency and accuracy of GS in both plant and animal breeding
(Crossa et al., 2017; Jeon et al., 2023).

3 Quantitative Genetics and Its Integration with Genomic Selection
3.1 Basic principles of quantitative genetics
Quantitative genetics is the study of traits that are influenced by multiple genes and environmental factors. These
traits, known as quantitative traits, exhibit continuous variation and are typically measured on a numerical scale.
The fundamental principles of quantitative genetics involve the partitioning of phenotypic variance into genetic
and environmental components, the estimation of genetic parameters such as heritability, and the prediction of
breeding values. Traditional methods like Best Linear Unbiased Prediction (BLUP) have been widely used to
estimate breeding values by leveraging pedigree information and phenotypic data (Koning, 2016; Li et al., 2017).

3.2 Genomic prediction models
Genomic prediction models have revolutionized the field of quantitative genetics by incorporating dense marker
information to predict the genetic potential of individuals. These models can be broadly categorized into linear
models, Bayesian approaches, and machine learning or non-linear models.

3.2.1 G-blup and other linear models
Genomic Best Linear Unbiased Prediction (G-BLUP) is a widely used linear model that extends the traditional
BLUP by incorporating genomic information. G-BLUP assumes that all markers contribute equally to the genetic
variance and uses a genomic relationship matrix to capture the genetic similarities between individuals (Koning,
2016; Li et al., 2017). Other linear models, such as Ridge Regression BLUP (RR-BLUP), have also been
employed for genomic prediction, particularly when dealing with traits controlled by a large number of
small-effect loci (Wang et al., 2015; Liu et al., 2018).
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3.2.2 Bayesian approaches
Bayesian methods offer a flexible framework for genomic prediction by allowing the incorporation of prior
information and the estimation of marker effects with different distributions. Notable Bayesian models include
BayesA, BayesB, and BayesC, each differing in their assumptions about the distribution of marker effects (Wang
et al., 2015; Koning, 2016). Bayesian regularized quantile regression (BRQR) has been proposed as a robust
alternative for dealing with skewed data, showing comparable or superior prediction ability to traditional Bayesian
ridge regression (BRR) (Pérez-Rodríguez et al., 2020). Additionally, Bayesian models can be extended to account
for genotype-by-environment interactions, enhancing prediction accuracy in multi-environment trials.

3.2.3 Machine learning and non-linear models
Machine learning and non-linear models have gained traction in genomic prediction due to their ability to capture
complex genetic architectures. Methods such as reproducing kernel Hilbert space (RKHS) and Gaussian kernel
models have been used to model non-additive genetic effects and interactions between markers
(Covarrubias-Pazaran, 2016; Liu et al., 2018). These models are particularly useful for traits with low heritability
or those influenced by a large number of minor genes.

3.3 Integration of genomics with quantitative genetics
The integration of genomics with quantitative genetics has led to significant advancements in the accuracy and
efficiency of breeding programs. By combining genome-wide association studies (GWAS) with genomic selection
(GS), researchers can identify quantitative trait loci (QTL) and improve the precision of genomic predictions. For
instance, the Stepwise Linear Mixed Model (StepLMM) unifies GWAS and GS, enhancing both QTL mapping
and genomic prediction accuracy (Li et al., 2017). The iterative method GBC, which incorporates aspects of both
G-BLUP and Bayes-C, has shown marginally superior prediction accuracy compared to using either method alone
(Iheshiulor et al., 2017).

Empirical studies have demonstrated that factors such as marker density, population size, and heritability
significantly influence the prediction accuracy of genomic models. Increasing marker density and population size
generally improves prediction accuracy (Figure 1), while the choice of statistical model should consider the
genetic architecture of the trait (Liu et al., 2018). The development of software tools like the R package sommer
facilitates the application of mixed models for genomic prediction, allowing for the inclusion of multiple variance
components and complex covariance structures (Covarrubias-Pazaran, 2016).

The integration of quantitative genetics with genomic selection has transformed breeding strategies, enabling
more precise and efficient selection of superior individuals. The continuous development and refinement of
genomic prediction models will further enhance the potential of genomic selection in various agricultural and
human genetic studies.

Comparison of marker prediction accuracy based on association and linkage maps under different marker density
conditions. The results indicate that increasing marker density can significantly enhance the predictive accuracy of
models, especially for traits with low heritability. Additionally, the figure illustrates the performance differences
between randomly selected markers and feature markers in the model, supporting the view that "factors such as
marker density, population size, and heritability significantly affect the prediction accuracy of genomic models.

4 Innovations in Genomic Selection Techniques
4.1 High-density genotyping and sequencing
High-density genotyping and sequencing have revolutionized genomic selection by providing a comprehensive
view of the genetic architecture of traits. The use of single nucleotide polymorphism (SNP) arrays and
next-generation sequencing (NGS) technologies has enabled the identification of thousands of genetic markers
across the genome. This dense marker information is crucial for accurate genomic predictions, as it ensures that all
quantitative trait loci (QTLs) are in linkage disequilibrium with at least one marker (Meuwissen et al., 2016). The
transition from medium-density SNP chips to whole-genome sequencing has further enhanced the resolution of
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genomic data, allowing for more precise selection decisions. However, the computational burden associated with
high-density data remains a challenge, necessitating the development of efficient algorithms and models to handle
the vast amount of information (Wang et al., 2016).

Figure 1 Comparison of prediction accuracies between trait-relevant markers (TRMs) and randomly selected markers based on the
results of association and linkage mapping using genotypic and phenotypic data of the training set within the experimental
populations. (A) and (B) Plant height (PH) and grain yield per plant (GYP) in the natural population (N = 435); (C) and (D) PH and
GYP in the RIL population (N = 212); (E) and (F) PH and GYP in the F2:3 population (N = 304). N is the number of individuals in
each population. TRM: the prediction accuracy based on TRMs in the general genomic best linear unbiased prediction (GBLUP)
model; RAN: the prediction accuracy based on randomly selected markers in the general GBLUP model. ALL: total of 38,299 single
nucleotide polymorphisms (SNPs), 2,450 and 2,826 bin markers were used to perform the scheme of cross-validation in natural,
recombinant inbred line (RIL), and F2:3 populations, respectively. The fivefold cross-validation scheme was implemented in this
case (Adopted from Liu et al., 2018)

4.2 Whole-Genome Prediction and Marker-Assisted Selection
4.2.1 Advantages over traditional marker-assisted selection
Traditional marker-assisted selection (MAS) has been limited by its focus on a few significant markers, often
missing the polygenic nature of complex traits (Koning, 2016). In contrast, whole-genome prediction (WGP)
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leverages the effects of all markers across the genome, providing a more comprehensive and unbiased estimate of
genetic values (Bradshaw et al., 2016). This approach captures the cumulative effect of numerous small-effect
QTLs, which are often overlooked in MAS. As a result, WGP offers higher accuracy in predicting breeding values,
leading to more effective selection and faster genetic gains (Meuwissen et al., 2016).

4.2.2 Application in complex trait prediction
The application of WGP in predicting complex traits has shown significant promise in both plant and animal
breeding. By incorporating all available marker information, WGP models can predict the genetic potential of
individuals with high accuracy, even for traits with low heritability (Bradshaw et al., 2016; Varshney et al., 2017).
This has been particularly beneficial in livestock breeding, where traits such as milk production and disease
resistance are influenced by many genes with small effects (Meuwissen et al., 2016). In crop breeding, WGP has
enabled the selection of lines with superior agronomic performance, accelerating the breeding cycle and
enhancing genetic gains per unit time (Unêda-Trevisoli et al., 2017).

4.3 Use of multi-trait and multi-environment models
The integration of multi-trait and multi-environment models in genomic selection has further improved the
accuracy and robustness of predictions. These models account for the genetic correlations between traits and the
interactions between genotypes and environments, providing a more holistic view of an individual's genetic
potential. By leveraging data from multiple traits and environments, breeders can make more informed selection
decisions, optimizing genetic gains across diverse conditions (Figure 2). This approach is particularly valuable in
plant breeding, where environmental variability can significantly impact trait expression and selection outcomes
(Merrick et al., 2022).

The advancements in high-density genotyping, whole-genome prediction, and the use of multi-trait and
multi-environment models have significantly enhanced the effectiveness of genomic selection. These innovations
have addressed the limitations of traditional MAS, providing more accurate and comprehensive predictions of
genetic values, and ultimately accelerating the pace of genetic improvement in both plant and animal breeding
(Wang et al., 2016; Meuwissen et al., 2016; Varshney et al., 2017).

Merrick et al. (2022) demonstrated the use of multi-trait and multi-environment models in genomic selection,
showing how different methods integrate data from multiple traits and environments to improve prediction
accuracy. Figure 2 highlights how the integration of environmental variables and multiple traits enhances model
accuracy, confirming that multi-trait and multi-environment models can provide more robust prediction results in
complex breeding environments.

5 Challenges and Limitations of Genomic Selection
5.1 Genotype-environment interactions
Genotype-environment interactions (GEI) present a significant challenge in genomic selection (GS) as they can
drastically affect the prediction accuracy of GS models. Traditional models often struggle to account for the
complexity of GEI, leading to poor phenotype predictions in unobserved environments. To address this, novel
models such as the 3GS model have been developed, which integrate genotype plus genotype × environment
(GGE) analysis with GS. This model has shown higher prediction accuracy, especially in environments with low
to negative correlations to other environments, and can predict new genotypes in unobserved environments with
high accuracy. Additionally, the computational complexity of 3GS increases linearly with the number of
environments and population size, making it significantly faster than standard models for large datasets (Jighly et
al., 2021). Other approaches, such as the BGGE package, also aim to improve computational efficiency while
accounting for GEI by using Bayesian linear mixed models and special genetic covariance matrices (Granato et al.,
2018). These advancements highlight the importance of incorporating GEI into GS models to enhance prediction
accuracy and computational efficiency.
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Figure 2 Optimization of the traditional breeding pipeline and product development based on an 11–year breeding program from
parental crossing to variety release. The effect of each component of optimization (genomic selection, training population design,
inbred line development, field design, high-throughput phenotyping (HTP) on different aspects of the breeder’s equation (selection
intensity, selection accuracy, genetic variance, and cycle time) is shown by the coverage of the method of optimization within the
respective column of the different factors of the breeder’s equation. For example, for Years 1-3 of the breeding cycle, the composition
and structure of the training population (purple) affect both selection accuracy and genetic variance, whereas the choice of genomic
selection models affects the intensity of selection, prediction accuracy, and genetic variance (Adopted from Merrick et al., 2022)

5.2 Accuracy of genomic predictions
The accuracy of genomic predictions is a critical factor in the success of GS. The correlation between predicted
and true breeding values is influenced by several factors, including the density of markers and the size of the
reference population. Increasing the size of the reference set and using denser markers can improve prediction
accuracy. However, this often comes at the cost of increased computational burden, particularly with non-linear
Bayesian models, which, while providing higher accuracy for some traits, require significant computational
resources (Wang et al., 2016). Theoretical advancements have introduced new proxies for accuracy that
outperform existing ones, particularly in configurations of linkage disequilibrium (LD) between quantitative trait
loci (QTLs) and markers (Rabier et al., 2016). Despite these improvements, challenges remain in maintaining the
stability of genomic predictions, as fluctuations in evaluations can lead to a crisis of confidence in GS (Misztal et
al., 2021). Therefore, ongoing research is needed to develop models that balance accuracy and computational
efficiency while ensuring stable predictions.

5.3 Data complexity and computational demands
The complexity of data and the computational demands associated with GS are significant limitations. The
integration of high-density SNP and whole-genome sequence data into GS models has transformed breeding
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practices but also introduced substantial computational challenges. Non-linear Bayesian models, while accurate,
are computationally intensive, necessitating strategies to improve efficiency (Wang et al., 2016). The development
of ensemble learning algorithms, such as Gradient Boosted Decision Trees (GBDT), offers a promising alternative
by providing high computational efficiency and competitive prediction accuracy compared to traditional Bayesian
models (Yu et al., 2022). Additionally, the use of sparse covariance matrices and block diagonal matrices in
models like BGGE can reduce computational time significantly (Granato et al., 2018). These innovations are
crucial for managing the large-scale, high-dimensional data typical in modern breeding programs and ensuring
that GS remains a viable and efficient tool for genetic improvement.

6 Case Studies and Practical Applications
6.1 Successful implementation in crop breeding
Genomic selection (GS) has revolutionized crop breeding by enabling the rapid selection of superior genotypes
and accelerating breeding cycles. The concept, initially proposed by Meuwissen et al. in 2001, has been widely
adopted in crop breeding programs, particularly for crops like maize and wheat, due to large international efforts
by organizations such as the International Maize and Wheat Improvement Center (CIMMYT) (Koning, 2016). GS
has shown significant promise in improving quantitative traits controlled by multiple genes with small effects,
which traditional marker-assisted selection (MAS) struggled to address (Varshney et al., 2017; Budhlakoti et al.,
2022).

The integration of GS with other breeding tools and platforms has further enhanced genetic gain. For instance,
refining field management to improve heritability estimation and prediction accuracy, and developing optimum
GS models that consider genotype-by-environment interactions and non-additive effects, have been crucial (Xu et
al., 2019). Additionally, the use of high-throughput genotyping and phenotyping technologies has accelerated the
breeding process, making GS a powerful tool for developing climate-resilient crop varieties (Wang et al., 2018;
Krishnappa et al., 2021).

6.2 Application in livestock improvement
In livestock breeding, GS has led to unprecedented advances, particularly in dairy cattle, where it has almost
entirely replaced traditional selection methods based on progeny testing. This shift has resulted in a doubling of
genetic improvement per generation compared to traditional methods (Koning, 2016). The success of GS in
livestock is attributed to the significant reduction in generation intervals and the higher individual values of
livestock, which make the investment in GS more economically viable (Xu et al., 2019).

The application of GS in livestock has been facilitated by the development of medium-density SNP chips, which
became routinely available for main livestock species around 2006. This technological advancement allowed for
the widespread adoption of GS in the industry, leading to remarkable improvements in genetic gain and selection
accuracy . Current methods for GS in livestock include linear regression, Best Linear Unbiased Selection (BLUP),
and Bayesian approaches, with the latter being extensively refined over the years (Meuwissen et al., 2016).

6.3 Insights from emerging research
Emerging research in GS continues to push the boundaries of what is possible in both crop and livestock breeding.
For instance, studies have shown that integrating GS with speed breeding and other novel technologies can
significantly enhance the efficiency and pace of breeding programs. Additionally, the development of improved
statistical models that leverage genomic information to increase prediction accuracies is critical for the
effectiveness of GS-enabled breeding programs (Budhlakoti et al., 2022).

In the context of human genetics, insights into the genetic architecture of complex traits are informing GS
approaches in livestock. For example, understanding the genetic mechanisms underlying variation in complex
traits, such as height, can help improve the accuracy of genomic predictions in livestock (Kemper, 2021). This
cross-disciplinary approach highlights the potential for GS to benefit from advances in other fields of genetics,
further enhancing its application in agricultural breeding programs.
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Overall, the evolving landscape of GS is characterized by continuous innovation and integration of new
technologies, making it a cornerstone of modern quantitative genetics and breeding strategies (Koning, 2016;
Krishnappa et al., 2021; Xu et al., 2019).

7 Concluding Remarks
Genomic selection has brought significant innovations to the field of quantitative genetics, utilizing
single-nucleotide polymorphisms (SNPs) and other genomic markers to enable the early identification of
genetically superior individuals. This approach has greatly improved selection accuracy, particularly in animal
breeding, by calculating breeding value indexes that encompass almost all quantitative trait loci (QTLs). The
application of high-throughput sequencing technologies has further enhanced our ability to identify genomic
regions related to adaptation and species differentiation, and to deepen our understanding of the genomic structure
of diversity. Emerging methods like deep learning and convolutional neural networks have provided critical
support for uncovering the role of natural selection from large-scale genomic data.

The future of quantitative genetics lies in the continued integration of genomic data with advanced computational
methods. Genome-wide association studies (GWAS) and population genetics will help us understand the
evolutionary mechanisms that maintain genetic variation for quantitative traits. Additionally, genomic selection
holds great promise in plant breeding for improving agricultural productivity, though it must be carefully adapted
to different breeding systems and environmental conditions. Furthermore, exploring the importance of balancing
selection in genetic diversity will provide more insights into species evolution.

To further advance genomic selection and quantitative genetics, future research should focus on several key areas.
First, integrating multivariate selection will be crucial for understanding how correlational selection shapes
genomic architecture. Second, more accurate prediction models are needed to account for the complex interactions
between genetic and environmental factors, especially in breeding value predictions. Additionally, genomic
selection methods should be expanded to include a wider range of species, particularly those with complex
breeding systems or those underrepresented in current research. The potential of deep learning and artificial
intelligence is vast, and future research should explore how these tools can be applied in genomics. Finally,
developing new methods to identify and quantify balancing selection in genomes will help us better understand its
role in maintaining genetic diversity within populations.
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