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Abstract With the rapid advancement of biological research, the growth of biological big data has reached unprecedented scale and
complexity. This diversity and sheer volume of data present significant challenges in storage, management, and analysis, while
simultaneously driving the rapid development of emerging data processing technologies. This study provides an overview of the
latest progress in biological big data processing, covering topics from data preprocessing and cleaning techniques to efficient
algorithms and computational frameworks, as well as the applications of artificial intelligence and machine learning in disease
prediction, genomic analysis, and other fields. It further explores strategies and methods for multi-omics data integration and the
implementation of scalable data visualization techniques in the analysis of biological networks and genomic data. Additionally, the
article examines the potential applications of cutting-edge technologies such as quantum computing and edge computing in biological
big data, along with the future development of automated data processing pipelines. The goal is to contribute to sustained innovation
and progress in the field of biological data analysis.

Keywords Biological big data processing; Data preprocessing; Artificial intelligence; Multi-omics data Integration; Quantum
computing

1 Introduction

In recent years, biotechnology has advanced rapidly, and high-throughput experiments have become increasingly
common. As a result, the amount of data is snowballing. Fields such as genomics, proteomics, biological imaging,
and medical imaging are rapidly generating vast amounts of information (Mahmud et al., 2017; Muzio et al.,
2020). However, this data is much more than simple text or numbers. Besides its sheer volume, its structure is also
complex, placing considerable strain on storage, processing, and analysis.

In fact, traditional data mining methods are now struggling to cope with this massive and complex biological big
data (Kamal et al., 2016; Yang et al., 2020). The challenges are particularly acute when the data is imbalanced,
high-dimensional, or requires real-time processing. Clearly, more powerful algorithms and tools are needed.

The good news is that technological advances are opening up new possibilities. Machine learning and deep
learning are playing an increasingly important role, and more and more researchers are using them to extract
useful information from this complex data. These methods are finding applications in everything from DNA
sequence alignment to protein function prediction and even disease diagnosis. Simultaneously, algorithms inspired
by biological systems, combined with systems engineering approaches, are attempting to address long-standing
problems, such as overfitting and dynamic data analysis (He and Wang, 2020; Dou et al., 2023; Pham and
Raahemi, 2023).

Of course, efficient big data processing isn't just about accelerating research; more importantly, it's about
generating more accurate and reliable results. This article isn't simply a technical introduction; rather, it aims to
systematically review the main approaches currently used to process biological big data, introducing some new
algorithms and their application scenarios. We'll also focus on tools currently under development to see if they can
address data processing challenges that have long plagued researchers.
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2 Characteristics and Processing Requirements of Biological Big Data

2.1 Extensive data types and numerous problems

Genomes, protein structures, expression profiles... these are just some of the types of biological big data. With
this proliferation of data comes a host of challenges. Different biological systems and processes operate
independently, generating a diverse array of data, ranging from the smallest molecules to entire ecosystems
(Dall'Alba et al., 2022). While seemingly comprehensive, processing is far from straightforward. Each type of
data has its own unique characteristics, forcing us to use different algorithms and tools, making a "one key opens
all locks" nearly impossible (Gill and Buyya, 2019).

2.2 Storage is more than just "storing data"

Faced with massive data volumes, traditional storage methods simply cannot cope. Especially as data continues to
grow, storage pressures continue to increase. New technologies like cloud computing and NoSQL have alleviated
the situation somewhat. However, things are not that simple. Data must be transmitted quickly, accessible, and
secure—all challenges. Especially when real-time data processing and analysis are required, many systems clearly
struggle (Pal et al., 2020).

2.3 To effectively process this data, a solid foundation is essential

Successful biological data processing relies not on a single technology but on a comprehensive set of
infrastructure. Speed and scale require parallel or distributed computing (Almasoud et al., 2019). Data comes from
a variety of sources and formats, making it more complex than a jigsaw puzzle, requiring robust data integration
methods. Furthermore, useful information in data is often deeply hidden, making it impossible to discover it with
the human eye. Machine learning and data mining tools are essential for uncovering it. However, Al alone doesn't
guarantee a complete solution—problems like data imbalance and feature extraction still require practical
solutions. Another often-overlooked aspect is that the tools must be user-friendly. After all, not every biologist can
code.

3 Data Preprocessing and Cleaning Techniques

3.1 Noise reduction and standardization methods

If biological big data is of poor quality, subsequent complex analyses will struggle to produce reliable results.
Therefore, removing noise from the data and performing standardization are crucial. While many methods are
currently available, not all are suitable for all situations.

Techniques such as robust principal component analysis (PCA) are commonly used in industrial data processing.
Their advantage is their ability to handle significant amounts of noise and data inconsistencies (Zhu et al., 2018).
However, biological data is particularly complex, and the situation presents a different challenge. For example, the
pgulMP tool is particularly well-suited for biological data due to its simple graphical interface, making it suitable
for users without programming experience. It also incorporates state-of-the-art machine learning imputation
techniques, such as predictive mean matching. While much of the data cleaning process is automated, it also
allows for manual adjustments based on specific data (Figure 1) (Malkusch et al., 2021).

(a) )

Transform

preprocessed
data

Figure 1 (a) Flowchart of the data engineering pipeline as it is used in the pgu/MP package; (b) Screenshot of the graphical user

Traditional statistical methods, such as linear transformations, Box-Cox transforms, and hidden Markov models, remain widely used.
These methods are particularly useful when we need to quickly standardize data to lay the foundation for subsequent machine
learning (Rahman, 2019)
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3.2 Missing value handling and outlier detection
Missing values or outliers in data have always been a challenge in data cleaning. This is particularly common in
clinical and bioanalysis data. In fact, many solutions to these problems have long been available.

For example, k-nearest neighbor imputation is often used to impute missing values. Compared to simple mean
imputation, this method better preserves the original data structure, such as clustering characteristics, and thus
produces more accurate analytical results (Malkusch et al., 2021). Of course, not all methods are suitable for every
scenario. Clinical data is often disorganized and even unbalanced, necessitating a systematic cleaning process. A
review of medical data preprocessing suggests that combining data dimensionality reduction and outlier detection
is key to improving clinical data quality (Idri et al., 2018).

In industrial process modeling, the situation is somewhat different. Here, we prefer a robust data mining strategy,
aiming to ensure that the model remains robust and reliable even in the face of complex and changing processes.
In general, no matter the field, the most important factor in choosing a processing method is the characteristics of
the data itself.

4 Efficient Algorithms and Computing Tools

4.1 Mapreduce: handling data in parallel

MapReduce has been widely used in bioinformatics because it splits big jobs into smaller parts. These parts can be
processed at the same time on different machines, which works great for huge datasets like DNA sequencing. One
example is mrPNN, which mixes probabilistic neural networks with MapReduce. This approach helps classify
microarray data faster and more precisely than older methods (Baliarsingh et al., 2020). Another study used
MapReduce with the k-nearest neighbor method to handle large, uneven DNA datasets. This not only sped up
classification but also saved storage (Kamal et al., 2016). Though MapReduce isn’t perfect, these cases show it’s
still handy for certain tasks.

4.2 Spark vs. hadoop: popular choices for biological data

Spark and Hadoop are both go-to tools for biological big data. While both handle large datasets, Spark is faster
because it keeps data in memory, making it better for jobs that need lots of read-write cycles (Guo et al., 2018).
For instance, FastKmer uses Spark to pull k-mer details from huge sequences quickly while staying scalable.
Hadoop isn’t falling behind—tools like HBlast boost sequence alignment speed by running tasks in parallel.
There’s also BioSpark, which blends Spark and Hadoop to tackle massive, complex datasets like those in
simulations (Klein et al., 2017). Though they work differently, both aim to make bioinformatics analysis quicker
and more reliable.

4.3 Real-world use: speeding up genome analysis

What really matters is how well these tools perform in real cases. For genome data, Hadoop and Spark have
proven useful. Take FastKmer—it uses Spark and has a special feature to evenly spread work across nodes. This
fixes common data imbalance issues and boosts speed (Petrillo et al., 2018). MapReduce also plays a role in live
genome analysis, from gathering data to crunching numbers later. No tool is perfect, but these examples show one
thing clearly: with genomic data growing bigger and more complex, old-school methods aren’t enough. We need
smart, fast computing solutions.

5 Applications of Artificial Intelligence and Machine Learning in Biological Big Data

5.1 Use of deep learning in gene sequence analysis

Traditional methods often struggle to capture complex patterns in high-dimensional data such as genomes. Deep
learning, particularly convolutional neural networks (CNNs), performs well in this area. Already in several studies
(Koumakis, 2020; Liu et al., 2020), CNNs have been used to predict the structure of functional gene regions, such
as promoters and enhancers, and to analyze changes in gene expression. The "associations" they uncover often
escape previous machine learning methods.
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5.2 Disease prediction and classification: the strengths of machine learning

If you ask whether modern machines can help predict disease, the answer is more optimistic than you might think.
Deep learning models, in particular, can process large amounts of genomic, proteomic, and metabolomic data,
identify biomarkers, and even infer potential disease progression pathways. These models can now accomplish
tasks such as medical image recognition and gene classification (Cao et al., 2018; Schmidt and Hildebrandt, 2020).
This has also driven the development of personalized medicine. However, this isn't applicable in all cases, as data
quality and computing resources are crucial.

5.3 Case study: application of convolutional neural networks in protein structure prediction

5.3.1 Infrastructure design

When it comes to using CNNs for protein structure prediction, don't assume their design is simple. Typically,
multiple convolutional layers are stacked one on top of another, interspersed with pooling layers, and finally
connected to a fully connected layer. This design aims to capture spatial features in protein data, from local to
global scales (Jin et al., 2020; Mahmud et al., 2020). Some groups are experimenting with more complex network
structures, such as residual networks (ResNet) and recurrent neural networks (RNN), to see if they can improve
accuracy, but the effectiveness depends on the specific task and data.

5.3.2 Model training is detailed

There are no shortcuts. Before predicting protein structure, high-quality sequences and corresponding structures
must be collected from databases like the PDB. Next, the data must be organized and grouped before training the
CNN model. This process is often computationally intensive, especially when backpropagation and gradient
descent algorithms are used (Angermueller et al., 2016; Wang and Fang, 2024). Data augmentation and
regularization methods are often used to prevent model overfitting, but these methods are not always effective.

5.3.3 Is the model accurate

The results are only known through evaluation. There are a few commonly used evaluation metrics, primarily
accuracy, precision, recall, and F1 score. Cross-validation is a common testing method used to assess the stability
and reproducibility of a model across different datasets. Numerous studies have demonstrated that CNNs
outperform traditional methods in protein structure prediction (Libbrecht and Noble, 2015). However, models still
require continuous improvement, especially when dealing with unknown structures.

6 Comprehensive Analysis of Multi-omics Data

6.1 Challenges and solutions in multi-omics data integration

Integrating data from different omics groups sounds appealing, but in practice, it's not that simple. The genomic,
transcriptomic, proteomic, and metabolomic levels are like different "languages," with large amounts of data and
often mixed with noise. These differences compound and complicate analysis. Especially when the number of
features far exceeds the number of samples, models can easily become overloaded, and seemingly reliable results
may not be trustworthy (Mirza et al., 2019). High data dimensionality not only easily leads to overfitting but also
makes it more difficult to interpret the results.

However, don't assume that these problems are beyond your control. An increasing number of researchers are
using tools like deep learning, which are not afraid of high data dimensionality and can detect complex nonlinear
relationships. However, deep learning suffers from the "black box" problem, raising questions about the reliability
of its results. Another network-based approach uses graphs to represent the connections between different omics
models, identifying key nodes or small networks. This can sometimes reveal underlying biological mechanisms
(Demirel et al., 2021; Agamabh et al., 2022). Often, known biological knowledge is incorporated to help the model
better interpret the data.

6.2 Commonly used multi-omics integration methods: bayesian networks and multi-layer models

When it comes to integration methods, Bayesian networks and multi-layer modeling are relatively common.
Bayesian networks, like a mental map, can express dependencies between variables and integrate existing
biological knowledge. Many studies have used them to predict disease, identify biomarkers, and analyze the

251



Sy

-

N\
Computational Molecular Biology 2024, Vol.14, No.6, 248-255
A http://bioscipublisher.com/index.php/cmb

mechanisms of complex pathologies (Li et al., 2016; Cominetti et al., 2023). This type of model can
simultaneously process multiple omics data, providing a more comprehensive view of biological systems.

However, Bayesian networks are not the only option. In recent years, multi-layer models have also gained
popularity, such as heterogeneous multi-layer networks (HMLNSs), which attempt to unify different types of data
and present the structure of biological systems through the relationships between layers. HMLNs have been used
to reveal the causal relationship between genes and phenotypes, and to study the impact of environmental changes
on organisms (Lee et al., 2020). In addition, deep learning has also been introduced into multi-layer models,
leveraging its sensitivity to nonlinear relationships and showing great potential in disease classification, marker
discovery, and drug response prediction.

7 Ways to Show Big Data Visually

7.1 Drawing biological connections

Reading about molecular interactions in text or tables can be hard to follow. Turning them into pictures makes it
easier to spot relationships. For instance, showing how proteins interact as network diagrams works great for
complicated data with lots of details (Cruz et al., 2019). In network biology, researchers often combine different
genetic data to find important connection points or groups that work together (Charitou et al., 2016). But regular
pictures don't show everything. That's why scientists use graph neural networks (GNNs) - special tools that find
hidden patterns and help with things like guessing protein jobs or testing medicines. FYI, GNNs are smart
computer programs made specifically for connection-type data.

7.2 Viewing genetic info at different scales

Genetic researchers constantly switch between close-up and big-picture views. One moment they're studying
single genes, the next they're looking at whole genomes. Multi-level visualization tools help toggle between these
views easily. They let scientists sort and rearrange data by different features, helping spot new gene-trait links.
While making accurate predictions used to be tough, new computer vision techniques (CNNs) have made faster,
better guesses possible (Wang et al., 2020; Huang, 2024). But good software isn't enough - when dealing with
huge amounts of data, powerful computers and special chips really help speed things up.

7.3 Real example: working with complicated gene networks

A concrete example explains better than theory. In one study, scientists mixed patient records and lab data to
create a detailed network model. The process wasn't simple, but paid off. They used a "brush-and-link" technique
to combine smaller networks, letting them compare different parts easily (Vehlow et al., 2015). Smart computer
programs didn't just crunch numbers - they highlighted which genes mattered most for sorting data. Tools like
"importance maps" show how much single genes affect results, while "response finders" pinpoint genes that
trigger strong reactions in the model (Figure 2) (Miiller and Gat-Viks, 2020). These aren't just fancy tricks - they
genuinely help us understand how genes work together and lead to better disease testing and treatment options.

A Extracellular stimulation

Ethnicity

Saliency
Maps

Ifnp LPS dNS1 Unstim Female Male African- Caucasian East Multi-
(18%) (33%) (19%) (30%) (58%) (42%) American (57%) Asian Racial
(21%) (20%) (%)

Figure 2 Gene expression versus saliency maps patterns (Adopted from Miiller and Gat-Viks, 2020)
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8 Future Trends and New Methods

8.1 Processing biological data on edge devices

Before, most biological data had to be sent to faraway servers for analysis. This wasn’t just slow—it could also
delay urgent tasks. For things like brain-computer interfaces or medical imaging, even a small wait can be a
problem. Now, more researchers are trying "edge computing,”" where data gets processed right where it’s collected
instead of being sent to a central server. This cuts down on network traffic and speeds things up. As Goh and
Wong (2020) pointed out, putting computing power directly on devices makes the whole system work better.
Basically, it helps data move faster and more reliably.

8.2 Could quantum computing boost big data analysis in biology

Some might say "quantum computing" still feels like science fiction, but it could actually help a lot with
biological data. Unlike regular computers, quantum systems are better at handling tricky problems, like studying
genes or finding new drugs (Outeiral et al., 2020). There’s even work being done to mix quantum tech with Al to
spot diseases like cancer (Emani et al., 2019). But we’re not there yet—today’s quantum machines still struggle
with issues like having too few qubits and being easily disrupted. Until these problems are fixed, we won’t see
them used everywhere.

8.3 More automation—but it’s not the whole answer

With experiments generating more data than ever, labs are using automated tools for jobs like cleaning up data,
putting it together, and running models—work that used to take hours by hand (Muzio et al., 2020). The idea is to
let scientists spend less time on boring tasks and more on big-picture thinking. Still, automation isn’t perfect.
Sometimes the system misses odd data points or makes mistakes, so human checks are still needed. Some teams
are now testing hybrid approaches, mixing automation with designs inspired by nature to make things more
flexible (Pham and Raahemi, 2023).
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