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Abstract Molecular dynamics (MD) simulations have become a pivotal tool in biochemical research, providing profound insights
into molecular interactions and dynamic behaviors at the atomic level. This study comprehensively reviews the historical
development, fundamental theories, and key techniques of MD simulations, including all-atom simulations, coarse-grained
simulations, and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations. Enhanced sampling techniques, such as
metadynamics, replica exchange molecular dynamics (REMD), and adaptive biasing force (ABF) methods, are discussed, with a
focus on their roles in overcoming energy barriers and sampling rare events. Advanced analysis methods, including trajectory
visualization, energy decomposition analysis, and principal component analysis (PCA), are also reviewed, with an emphasis on their
applications in protein conformational studies. This study aims to highlight the central role of MD simulations in elucidating
biomolecular behaviors and to provide guidance for their future research and technological development.

Keywords Molecular dynamics simulations; Biochemical research; Enhanced sampling techniques; Protein conformational studies;
Drug design

1 Introduction

Molecular dynamics (MD) simulation, which was first applied to study the photoisomerization of rhodopsin in the
1970s, has evolved from a conceptual computational method to a fundamental tool in biochemical research (Sinha
et al., 2022). Back then, it was first used in protein research despite the limited computing power available.
Nowadays, with more powerful computing devices and more efficient algorithms, MD has been widely applied in
various fields and is no longer merely a theoretical tool (Xu, 2023).

In simple terms, MD simulation is to "virtually" reproduce the movement process of molecules in a computer,
especially for large biological molecules like proteins. It can record the behavior of molecules at the atomic level
with extremely small time steps - a level of detail that many experimental methods find difficult to achieve
(Hollingsworth and Dror, 2018; Wu et al., 2022). Therefore, many scientists use it to observe how molecules
move, change, and even interact with other molecules. More specifically, this technology is very useful in
understanding the changing patterns of proteins. For instance, it is often used to study the binding process between
small molecule drugs and proteins, how two proteins recognize each other, or how the structure of a protein
changes after mutation (Liu et al., 2018; Lazim et al., 2020). Through these simulations, researchers can obtain
detailed information on energy changes and structural changes, which are crucial for understanding the functional
relationships of molecules. Processes such as new drug design and target optimization also frequently rely on the
reference data provided by MD simulations (Salo-Ahen et al., 2020).

This study will systematically review the technological development and practical applications of MD simulation.
The focus will be on some of the latest technical improvements, including the optimization of force fields (i.e.,
mathematical models used to calculate the forces between atoms), more powerful sampling methods, and the
integration with other computational techniques. The application section will mainly concentrate on protein
dynamics analysis, drug screening, and research related to membrane proteins, hoping to provide some ideas and
inspirations for subsequent biochemical research.
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2 Molecular Dynamics Simulation Basics

2.1 How force fields work

In MD simulations, force fields are like rulebooks that tell atoms how to interact. Popular ones like AMBER,
CHARMM, and GROMOS use real-world experimental data and some quantum math to predict how molecules
will behave (Conde et al., 2022). These rules need to be accurate but not too complicated, otherwise the computer
takes forever to run the simulation. Some scientists are now using Al to improve these force fields, especially for
tricky quantum effects, making the results more trustworthy.

2.2 Newton's laws drive the simulation

MD simulations basically work by applying Newton's physics over and over to track how particles move. At every
tiny step, the computer calculates where atoms should go next, kind of like making a stop-motion movie of
molecules (Arya and Bhatt, 2021). This works great for watching big molecules like proteins do their thing inside
cells (Hollingsworth and Dror, 2018). But you’ve got to be careful with settings like boundary conditions and
math formulas — get these wrong and your simulation goes off track.

2.3 Timing matters: fast vs. slow motion

Picking the right time step is key in MD. Usually, updates happen every 1-2 femtoseconds (that’s super fast!) to
catch quick movements like hydrogen bonds shaking (Pan et al., 2022). But there are tricks to speed this up, like
tweaking hydrogen atom weights (HMR method) or swapping hydrogen isotopes (HIE trick), letting you use 5-7
fs steps without losing much accuracy. There are two main approaches: equilibrium simulations (studying stable
systems) and non-equilibrium ones (watching systems react to changes), both super useful for studying protein
folding and shape-shifting (Habasaki et al., 2017).

3 Key Methods of Molecular Dynamics Simulation

3.1 Atomic-level simulation: seeing the details

In molecular dynamics research, atomic-level simulation (all-atom simulations) is the most common approach. It
involves directly modeling every atom in the system, leaving no detail unaccounted for. This simulation method
provides relatively precise feedback on the interactions between molecules and is particularly useful in studying
complex biological structures such as proteins, DNA, or cell membranes. Through this method, researchers can
observe minute changes at the atomic level, such as conformational changes, which are crucial for understanding
key biochemical reaction processes (Li, 2024). Although the computational load is considerable, with powerful
enough equipment, many microscopic changes can be captured.

3.2 Coarse-grained simulations: focus on the whole rather than the details

When the system to be simulated becomes large or the simulation time is extended, the atomic level may become
"unmanageable". At this point, a different approach can be adopted - coarse-grained simulations. This method
involves combining a group of atoms into a "particle" (or "bead"), which simplifies the molecular structure to a
certain extent. Although the specific movements of each atom cannot be observed, the overall dynamic
characteristics remain. The greatest advantage of the CG method is that it can save a significant amount of
computing power, and it is often used to study the movement of large molecular systems, such as membrane
structures or protein aggregation processes (Sokkar et al., 2015).

3.3 QM/MM hybrid simulation: balancing accuracy and efficiency

When the research objective involves electronic behavior, such as reactions at the active sites of enzymes or the
process of molecular binding, traditional molecular mechanics methods alone are insufficient. This is where
"QM/MM hybrid simulation" comes into play. The idea behind this approach is to "break through the key points":
the reaction center is treated with quantum mechanics to obtain a true depiction of the electronic structure, while
the rest of the system is still modeled using molecular mechanics to simplify the computational load. This way, the
accuracy of the critical regions is maintained without making the entire simulation overly burdensome (Brunk and
Rothlisberger, 2015; Kulkarni et al., 2021; Chow et al., 2023). At present, this hybrid approach has been widely
applied in fields such as molecular reaction dynamics, research on biological enzyme catalysis, and new drug
screening. In recent years, new techniques like "adaptive partitioning" and "introduction of machine learning
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models" have also been integrated, further enhancing the efficiency and stability of QM/MM simulations (Duster
etal., 2019).

4 The Application of Enhanced Sampling Technology in Molecular Dynamics

4.1 Metadynamics method driven by free energy

4.1.1 Construction of bias potential energy and its role in sampling

Metadynamics is a molecular simulation strategy that can significantly improve sampling efficiency. By
introducing a bias potential related to the simulation history, it helps the system break away from the local energy
minimum region that is prone to fall into in traditional molecular dynamics (MD). Specifically, this bias potential
energy is gradually added over several ** collective variables (CVs) ** - these variables reflect the slowest
moving but most critical degrees of freedom for conformational changes in the system. By continuously
superimposing small amounts of repulsive Gaussian functions on these CVs, Metadynamics can effectively "fill
in" the low valleys on the free energy surface, thereby guiding the system out of the local stable state and
accessing a richer conformational space (Pfaendtner, 2019).

4.1.2 Enhance the efficiency across energy barriers and the sampling capability for rare events

One of the most prominent advantages of Metadynamics over traditional MDS is its ability to traverse
high-energy barrier regions, making it particularly suitable for capturing low-frequency but critical molecular
events such as protein folding and ligand recognition. Because these events often occur on a nanosecond or even
millisecond time scale, conventional simulation methods find it difficult to observe them within a reasonable time
frame. Metadynamics significantly compressed the required sampling time by applying dynamic bias to CVs,
enabling researchers to reveal the transition path and the underlying free energy structure (Zhang, 2024).

4.1.3 Case study: from folding paths to the application of combining mechanisms

Metadynamics has been widely used to analyze dynamic behaviors in various biological systems, such as protein
conformational changes and small molecule binding mechanisms. In the study of Aib9 helical peptides, this
technique was used to generate the initial conformation set, and then combined with the Markov state model for
analysis, thereby characterizing the dynamic characteristics between peptide chain folding and unfolding (Biswas
et al., 2018). Furthermore, in exploring the binding energy of flexible protein-ligand complexes, Metadynamics
has demonstrated a powerful ability to capture the enthalpy-entropy co-changes during the binding process
(Wingbermuhle and Schafer, 2020).

4.2 Multi-temperature exchange: replica exchange molecular dynamics (REMD)

Replica Exchange Molecular Dynamics (REMD) provides another efficient method for exploring complex free
energy surfaces. Unlike single-trajectory simulation, REMD operates replicas of the system simultaneously at
multiple different temperature points. These replicas attempt to exchange conformations within a set period,
thereby enhancing the system's ability to break through energy barriers. This temperature exchange strategy
enables the system to rapidly traverse multiple conformational states, and is particularly suitable for systems with
rough free energy surfaces and dense local minima, such as the folding paths of proteins or conformational
rearrangements of biological macromolecules (Bernardi et al., 2015; Kamberaj, 2018).

4.3 Adaptive offset force (ABF) method

This ABF method is actually quite interesting. It mainly addresses the issue of low sampling efficiency in
molecular simulation. In simple terms, it is to dynamically adjust the applied bias force during the simulation
process. This force will counteract the free energy gradient of the system (the free energy gradient can be
understood as the energy barrier encountered by molecules during movement).

Unlike traditional methods, the uniqueness of ABF lies in the fact that its bias force constantly self-updates during
the simulation process. In this way, the system can more smoothly explore the changes in free energy under
different states. For instance, when studying the binding of drug molecules to proteins (Yang et al., 2019), or
observing conformational changes in proteins (Lazim et al., 2020), this method is particularly effective.
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5 Analytical Methods in Molecular Dynamics Simulation

5.1 Trajectory analysis and visualization

In Molecular Dynamics (MD for short) simulations, trajectory analysis and visualization are important ways to
understand the evolution of systems over time. With the help of these technical means, researchers can visually
observe the structural changes of molecules during the simulation process. Tools like PathReducer can compress
the molecular conformational trajectories originally in high-dimensional Spaces to be presented in lower
dimensions, while retaining their core geometric variation information as much as possible, thereby helping to
analyze complex conformational movements and reaction pathways. Especially for reaction trajectories or
large-scale dynamic processes, PathReducer will extract the principal components that best reflect the geometric
changes through principal component analysis (PCA), thereby achieving the visualization and dimensionality
reduction reconstruction of structural changes (Figure 1) (Hare et al., 2019). Furthermore, Sliding Window
Principal Component Analysis (sw-PCA) can be used to capture instantaneous cooperative motion in long-term
scale simulations, providing assistance for detecting key events such as conformation transitions (LeVine et al.,
2015).
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Figure 1 A flowchart indicating how PathReducer works. The blue arrows/boxes represent the procedure used if the user specifies a
“Cartesians” input to PCA and the red arrows/boxes represent the path taken with a “Distances” input specified. Black arrows/boxes
are parts of the method shared by both input types (Adopted from Hare et al., 2019)

5.2 Energy decomposition method
Energy Decomposition Analysis (EDA for short) is a technique that divides the total energy of a system into
different components, including kinetic energy, potential energy, and intermolecular interaction energy, etc.
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Through this method, it is possible to more clearly identify which energy components play a major role in the
stability or dynamic behavior of the system. In simulations such as Replica Exchange molecular dynamics (MD),
this method can also be combined with the probabilistic framework to analyze the energy landscape, thereby
identifying the metastable regions of the system (Palma and Pierdominici-Sottile, 2022). This approach is
particularly important for understanding the distribution pattern of free energy in complex systems.

5.3 Principal component analysis and clustering methods

5.3.1 The principle and practical application of PCA

Principal Component Analysis (PCA) is a common method for processing high-dimensional information in MD
trajectory data, which can help researchers identify the covariate that contributes the most to system changes. It
makes the interpretation of complex molecular motion more operable by compressing the original
multi-dimensional data to a few main axes (Post et al., 2019; Morishita, 2021. PCA can not only be used for
equilibrium state simulation, but also has certain adaptability to non-equilibrium processes (such as
conformational transformation). Furthermore, time-dependent PCA analysis can also reveal the phased evolution
of structural changes, thereby providing a more detailed dynamic explanation.

5.3.2 The role of clustering methods in conformational space analysis

Cluster analysis is indispensable in the study of the conformational space of molecular systems. Like
density-based clustering algorithms, they can effectively identify conformational clusters that exhibit local
stability on the Potential Energy Surface, namely the so-called metastable state. This is particularly important in
the study of dynamic processes such as protein folding and unfolding. Furthermore, the clustering method
combined with correlation feature screening can better distinguish the real cooperative motion from the
background noise, which is conducive to improving the recognition accuracy of functional motion (Diez et al.,
2022). This strategy is often adopted when analyzing signal paths and structural adjustment mechanisms in
complex biological systems.

5.3.3 The combined application of PCA and clustering in the study of protein conformational changes

The combined use of PCA and clustering methods can more comprehensively depict the conformational
transformation that proteins undergo during the simulation process. For instance, the PCA-driven Parallel
Cascaded selective Molecular dynamics (PaCS-MD) approach successfully captured rare large-scale structural
changes occurring in certain proteins by screening conformations with high transition potential and conducting
short-term simulations (Yasuda et al., 2020). This technology is applicable to the study of rare events that are not
easily observed through traditional methods. In addition, by projecting the simulated trajectories into the
dimensionality reduction space, researchers can also more clearly compare the differences between different paths
and the path with the lowest energy, thereby gaining a more intuitive understanding of the conformational
channels.

6 The Application of Molecular Dynamics Simulation in Protein Structure Research

6.1 Exploration of conformational changes and dynamic behaviors of proteins

Molecular dynamics (MD) simulation, as a computational method, has been widely applied in analyzing the
conformational changes and dynamic behaviors of proteins. Proteins themselves are not static; they possess strong
structural plasticity, which is crucial for them to perform biological functions such as allosteric regulation and
ligand binding. The full-atom explicit solvent simulation study through enhanced sampling technology shows that
the current force field model and sampling strategy can reasonably reproduce the slow structural transformation of
proteins from the primary state to the secondary state. In addition, such simulations also reveal the structure and
biophysical properties of those intermediate states that exist instantaneously and are difficult to capture
experimentally. With the aid of these simulation methods, researchers were able to depict the movement
trajectories of proteins in the free energy space and further reveal the coupling relationship between
conformational changes and molecular recognition processes. For example, this was verified in the study of
ribose-binding proteins (Ren et al., 2021).
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6.2 Protein-ligand interaction and prediction of binding free energy

In addition to conformational studies, MD simulations have also demonstrated significant value in elucidation of
protein-ligand interaction mechanisms and prediction of binding free energy. By simulating the dynamic changes
during the ligand binding process, researchers can observe the conformational rearrangements that proteins
undergo during the binding process. For example, coarse-grained simulation methods have been used to analyze
the coupling mechanism between protein conformational changes and ligand binding, and several key links of this
process have been successfully reproduced (Negami et al., 2020). To further enhance the sampling efficiency and
accuracy, researchers have also developed enhanced sampling techniques including solute tempering generalized
copy exchange, etc., to explore conformational changes induced by ligands. These methods not only draw a
complete free energy map, but also enhance the quantitative predictive ability of binding affinity. Overall, the
computational framework based on MD is of great significance for revealing the molecular mechanism of ligand
recognition and improving the accuracy of binding free energy prediction (Kukol, 2015).

6.3 Case analysis: structural dynamic simulation study of GPCR

G protein-coupled receptors (GPCRS) are a class of important transmembrane proteins, and the process of
regulating their activity often involves obvious conformational transitions. In recent years, MD simulation
technology has played a key role in explaining the structure-function relationship of GPCRS. Existing studies
have shown that MD simulation can accurately reproduce the overall conformational reconstruction process
experienced by GPCRS before and after ligand binding, provide the ability to analyze the transition path at the
atomic level, and reveal the association between local binding events and overall conformational changes (Tamura
and Hayashi, 2015). These simulation results not only deepen our understanding of the functional mechanisms of
GPCRS, but also provide strong theoretical support for structure-oriented drug design.

7 The Practical Application of Molecular Dynamics Simulation in Enzyme Catalysis and Drug
Design

7.1 Dynamic analysis of enzyme active sites and research on catalytic mechanisms

When it comes to how enzymes work, molecular dynamics simulation (MD) has really been of great help. It can
not only clearly see how the active site moves around, but also explain the specific steps of the catalytic reaction.
For instance, by using the QM/MM mixed method or ordinary MD simulation, scientists can now figure out why
certain amino acids are particularly important and how the protein environment affects the entire reaction.
However, it should be noted that these simulation results still need to be combined with experimental data. By
tracking how substrates enter and exit, how reactions occur, and how products leave, our understanding of
enzymes has indeed deepened significantly (Zhao et al., 2016). What is particularly practical is that this simulation
can also demonstrate the influence of factors such as temperature changes and solvent molecules on the binding of
proteins and ligands - which is especially crucial for modifying enzymes or designing new catalysts.

7.2 Application of molecular simulation in virtual screening

When looking for new drugs, MD simulation has now become a standard tool. Compared with traditional methods,
its greatest advantage is that it can take into account the flexibility of protein structure. By calculating the energy
changes and movement trajectories between drug molecules and target proteins, researchers can predict the
binding effects more accurately. Some studies have found that after considering the entropy change effect, the
consistency between the simulation results and the experimental results can be increased by about 30% (Vivo et
al., 2016). Although the computational load is a bit large, the binding conformation obtained in this way is more
reliable. Even those binding postures that are prone to errors in traditional molecular docking can now be
predicted more accurately.

7.3 Practical case: predicting the mode of action of anti-cancer drugs through simulation

For instance, recently, someone used MD simulation to study the interaction between the breast cancer target
MTDH and SNDI1 proteins. Through an extremely long simulation period (it is said to have taken nearly three
months)" They not only identified potential drug binding sites but also screened out a batch of promising
inhibitors (Figure 2) (Xu et al., 2023). Interestingly, these simulation results match the subsequent cell experiment
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data. Another case is the drug design targeting PKC - because this protein is particularly difficult to handle when
staying on the cell membrane, but by simulating the membrane environment, researchers still successfully
optimized several candidate drugs (Lautala et al., 2023). These examples demonstrate that although MD
simulation is not omnipotent, as long as it is applied in the right place, it can indeed significantly accelerate the
development of new drugs.

8 pINT

-

Figure 2 The corresponding pockets pW401, pINT, and pW394 generated based on MTDH-SNDI1 co-crystal structure 4QMG.The
pockets were represented by the frequency grid (brown meshes) with a cut-off of 0.5 using Fpocket (Adopted from Xu et al., 2023)

R

8 Summary

Molecular dynamics (MD) simulation has become an important tool in modern biochemical research, enabling
scientists to observe the movement and interaction of biological macromolecules at the atomic level. By capturing
dynamic behaviors such as conformational changes in proteins, molecular recognition processes, and structural
changes related to diseases, MD has become indispensable in mechanism research and early drug development.
Especially in the simulation of super-large molecular structures such as viral capsid or ribosome complexes, it fills
many knowledge gaps that are difficult to solve by traditional experimental methods.

One of the greatest advantages of MD is its ability to analyze the subtle fluctuations and transient interaction
patterns of molecules, which are crucial in the target validation, lead compound optimization, and even
formulation adjustment stages of drug development. It is particularly worth mentioning that the improvement of
the enhanced sampling algorithm (these techniques can capture rare biologically related states more quickly) has
greatly enhanced the efficiency and predictive ability of the simulation. However, MD simulation still requires a
large amount of computing resources, especially when simulating macromolecular systems or long-duration
processes at the microsecond or millisecond level.

Although the classic MD force field (the set of parameters that control atomic interactions) has achieved great
success over the past few decades, they usually ignore the polarization effect (the response ability of the electron
cloud to the external environment), which can affect the authenticity of the simulation results. Recently developed
polarizable force fields are attempting to address this issue, making the simulation of electrostatic interactions in
complex systems more accurate.

The large amount of structural dynamic data generated by MD simulation also brings challenges in storage,
pattern recognition and data analysis. For this reason, researchers have begun to introduce artificial intelligence,
especially machine learning techniques, to optimize data processing procedures and automatically extract key
features. Despite the promising prospects, these calculation methods are still in their infancy and need further
improvement.
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In the future, continuously optimizing force field parameters (especially models with adaptive polarization) is
crucial for enhancing the authenticity of MD simulations. At the same time, it is equally important to rationally
apply Al tools to improve sampling strategies and analyze massive amounts of data. These advancements can not
only enhance the simulation accuracy but also shorten the analysis time for complex biochemical research.
Furthermore, expanding the popularization of high-performance computing resources is crucial for supporting
large-scale MD projects. Finally, strengthening the cooperation between computational model researchers and
experimental scientists can ensure that simulation hypotheses are always based on experimental facts, forming a
virtuous cycle and promoting the progress of innovation and drug development.
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