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Abstract The protein-protein Interactions (PPI) network of pathogenic bacteria plays a significant role in the pathogenic 

mechanism of bacteria and the development of drug resistance, and it is a key entry point for systems biology and new drug research 

and development. However, traditional PPI prediction methods (such as yeast two-hybrid and co-immunoprecipitation, etc.) have 

limitations such as high cost, long cycle, limited coverage, and the results are easily disturbed by noise. In recent years, the rise of 

machine learning, especially deep learning, has brought revolutionary progress to PPI research. With its powerful nonlinear modeling 

and automatic feature extraction capabilities, it has broken through the bottleneck of manual feature engineering. This paper reviews 

the application progress of machine learning techniques in predicting protein-protein interactions of pathogenic bacteria, with a focus 

on how supervised, unsupervised and deep learning methods overcome the limitations of traditional methods and improve prediction 

performance. Meanwhile, we discuss the impact of data preprocessing and feature engineering strategies on the model, summarize 

the construction and evaluation methods of machine learning models, as well as the application achievements of these models in 

revealing antibiotic resistance mechanisms, vaccine target screening, cross-species interactions, and other aspects. Through a case 

study of deep learning prediction in a Salmonella protein-protein interaction network, we verified the effectiveness and biological 

significance of deep learning models, and looked forward to the current challenges and future development directions. 
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1 Introduction 

Pathogenic bacteria rely on a complete protein-protein interaction system when infecting their hosts. These PPIs 

determine virulence, metabolic regulation and immune evasion ability. The significance of studying the 

interaction network does not lie in the role of individual proteins, but in revealing the synergistic relationship of 

the entire pathogenic system. Like Salmonella, Mycobacterium tuberculosis, etc., their networks often have a 

"scale-free" and "small-world" structure, with a few hub proteins undertaking key functions. Once disrupted, the 

entire system will be affected (Humphreys et al., 2024). This enables PPI analysis to not only reveal biological 

laws but also provide new targets for the design of antibacterial drugs and vaccines. 

Traditionally, protein interactions have mainly been verified through experiments, such as yeast two-hybrid, 

TAP-MS or protein chips. However, these methods have problems such as high false positives in pathogenic 

bacteria, low recognition rate of membrane proteins, and limited throughput (Ding and Kihara, 2018). Building a 

complete interaction group is often costly and time-consuming, making it difficult to respond quickly to new 

pathogenic bacteria. Thus, computational prediction gradually replaced experimental screening as the mainstream. 

The rise of machine learning has completely transformed the way research is conducted. Early methods relied on 

manual features, such as amino acid composition and domain co-occurrence, and used SVM or random forest 

prediction, which were accurate but limited by human experience. Deep learning can directly learn features from 

sequences. The PIPR model achieves sequence-level prediction by using residual convolutional networks, and 

DPPI increases the AUC to above 0.8 by combining PSSM and CNN. These achievements demonstrate that even 

with scarce data, cross-species prediction can still be achieved with the aid of transfer learning or pre-trained 

models. Nowadays, machine learning enables researchers to integrate sequence, structure and functional 
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information to depict pathogen interaction networks within a unified framework, not only improving prediction 

efficiency, but also redefining the path of pathogen mechanism research. 

2 The Biological Basis of Protein-Protein Interactions Among Pathogenic Bacteria 

2.1 Characteristics of the protein interaction network of pathogenic bacteria 

Although the protein interaction network of pathogenic bacteria is complex, it follows certain rules. Most proteins 

interact only with a few partners. A few "hub" proteins, such as RNA polymerase or ribosome components, are 

densely connected to form the network core. Networks often exhibit "small-world" and modular characteristics: 

functional modules such as flagella, secretory systems, and membrane synthesis are closely integrated internally, 

while the connections between modules are sparse. Cross-species conserved interactions (such as DNA 

polymerases and sliding clips) reveal evolutionary stability (Szymborski and Emad, 2024). Identifying these 

structural patterns helps to discover both critical and vulnerable targets for antibacterial intervention. However, 

the compact genomic structure and high interactivity reusability of pathogenic bacteria make network modeling 

more challenging. 

2.2 Pathogenicity mechanism and the molecular basis of host-pathogen interaction 

Infection is essentially a molecular game between the pathogen and the host. The virulence systems of bacteria, 

such as Salmonella type III secretory system or ESX-1 of Mycobacterium tuberculosis, are all realized through 

protein-protein interaction assembly. If the key interaction is impaired, the virulence will decrease. Bacteria can 

also reconstruct metabolism through interaction networks to resist drugs. For example, after PBP is suppressed in 

MRSA, the network "changes course" to maintain cell wall synthesis. Cross-species interactions are equally 

important. Escherichia coli effector proteins bind to host actin to facilitate its invasion. Databases such as HPIDB 

have integrated such data, supporting the construction of host-pathogen integration networks (James and 

Munoz-Munoz, 2022), and promoting machine learning predictions of cross-species interactions. 

2.3 Sources of protein interaction data and experimental verification methods 

A reliable PPI model cannot do without high-quality data. Positive samples mainly come from databases 

(BioGRID, IntAct, STRING) and literature experimental evidence. Homology inference is also an important 

supplement (Li and Ilie, 2017). Negative samples mostly rely on random selection or location difference method, 

which is noisy but practical. The prediction still needs experimental verification: Methods such as yeast 

two-hybrid, Co-IP, SPR, and ITC can confirm the interaction at different levels (Zhao et al., 2022). With the 

development of high-throughput mass spectrometry and protein chips, the verification efficiency has been 

continuously improved, which in turn has improved the data quality of the prediction model. 

3 Principles and Classification of Machine Learning Methods in Protein-protein Interaction 

Prediction 

3.1 Supervised learning methods 

Supervised learning is the earliest machine learning method used for PPI prediction. It distinguishes between 

"interaction" and "non-interaction" for the trained classification model through labeled proteins. SVM is a classic 

representative. It can divide samples in a high-dimensional space and is suitable for small sample data, but it relies 

on artificial feature design (Ding and Kihara, 2018). Random Forest (RF) classiizes through voting of multiple 

decision trees, can handle high-dimensional features and evaluate feature importance, and its predictive 

performance is superior to that of SVM). Linear models such as logistic regression are mostly used as baseline 

references. Traditional methods rely on feature engineering to combine features such as sequence similarity, 

physicochemical properties, and co-expression to improve accuracy (Zhang et al., 2019), but their performance is 

limited under complex data, laying the foundation for deep learning. 

3.2 Unsupervised and semi-supervised learning methods 

Unsupervised and semi-supervised methods mine potential structures when the data lacks labels (Li and Ilie, 

2017). Cluster analysis assumes that function-related proteins are more likely to interact and can detect modules, 

but the accuracy is affected by the threshold. Web-based link prediction algorithms that evaluate potential 

connections using common neighbors or random walks (Khemani et al., 2024) have been proven effective in 
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species such as Mycobacterium tuberculosis. The autoencoder learns latent features through compression 

reconstruction (Gonzalez-Lopez et al., 2018), and the variational graph autoencoder (VGAE) can directly perform 

unsupervised link prediction. Semi-supervised models such as GCN can propagate label information in 

combination with a small number of labeled samples. Although the accuracy of these methods is not as good as 

that of deep supervision models, they are particularly valuable in small sample scenarios. 

3.3 Innovative applications of deep learning and graph neural networks in PPI prediction 

Deep learning and graph neural networks (GNNS) have become new directions for PPI prediction. Sequence 

models such as PIPR (RCNN structure) or LSTM-CNN combined models significantly improve prediction 

performance. The pre-trained language models (ProtBERT, ESM) further enhanced the sequence representation 

(Charih et al., 2025), and the F1 values generally exceeded 0.8. The introduction of structural information and the 

development of AlphaFold2 have made structure-based prediction possible. GNN models such as GraphSAGE 

and GAT can directly learn topological features and predict missing edges on interaction networks. They can 

integrate sequence embeddings and network structures simultaneously, and have stronger generalization and 

interpretation capabilities (Khemani et al., 2024). In the future, the integration of heterogeneous maps and graph 

generation models will further enhance the accuracy and systematicness of pathogen interaction prediction. 

4 Data Preprocessing and Feature Engineering 

4.1 Sequence feature extraction 

Protein sequences are the core information for PPI prediction, but it is not easy to extract useful features. The 

earliest method statistically analyzed the amino acid composition, divalent or trivalent frequencies, but lost the 

sequence information. Later Conjoint triads were grouped according to physicochemical properties and retained 

the local sequence. Physicochemical properties such as hydrophobicity, charge, polarity, isoelectric point, etc. are 

also often used to distinguish protein types (Ding and Kihara, 2018). Evolutionary information further enhances 

predictive power. Interacting proteins often co-evolve and can be measured by conservation scores or phyletic 

profile similarity. In encoding, One-hot or embedding representations such as ProtVec and ProtBERT are 

commonly used (Charih et al., 2025). Multi-feature fusion (sequence + structure + conservation) is often superior 

to single feature, but the sequence features of different species need to be standardized before modeling. 

4.2 Structural and functional characteristics (protein folding, domains, GO annotations) 

Structural and functional features reveal the interaction mechanism. Domain pairing is key to interaction, such as 

SH3 with polyproline motifs (Kotlyar et al., 2019). In machine learning, domains can be statistically co-occurring 

as binary features. Homologous modeling or molecular docking can obtain structural features such as interface 

energy and area. AlphaFold2 greatly expanded the structural data of pathogenic bacteria. Functional annotations 

(GO) reflect biological connections, and proteins with similar semantics are more likely to interact. Combining 

subcellular localization and pathway information can improve prediction accuracy, but functional similarity does 

not equal physical interaction. The model integrating sequence, domain and GO performed best in pathogenic 

bacteria (Sun et al., 2017), but feature redundancy needs to be prevented. 

4.3 Data standardization and feature selection techniques (PCA, feature embedding, feature importance 

analysis) 

Data standardization and feature selection are the keys to modeling. The dimensions of different features vary 

greatly and require normalization or logarithmic transformation. PCA can reduce dimension and denoise, and 

embedding vectors can represent category features. Feature selection can use L1 regularization, feature 

importance, or recursive elimination to filter out key features. It is more effective to select features in combination 

with biological knowledge. For example, membrane proteins should retain hydrophobic characteristics. Missing 

values can be filled with the mean or labeled to avoid bias. Overall, in the prediction of pathogen PPI, 

standardized feature engineering and preprocessing often determine success or failure more than model 

complexity (Ding and Kihara, 2018). 
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5 Construction and Evaluation of Machine Learning models 

5.1 Training data and negative sample construction strategy 

Building a high-quality training set is the key to PPI prediction. Positive samples are generally from experimental 

databases such as BioGRID and IntAct, and the difficulty lies in negative samples. The random pairing method is 

commonly used (Chen et al., 2019), but it is prone to mix in undiscovered true interactions. Therefore, it is 

recommended to avoid functionally similar proteins or utilize subcellular localization differences. There are also 

strategies based on functional differences or excluding co-interacting partners, and even using semi-supervised 

models without explicitly labeling negative samples. To prevent data imbalance, positive and negative samples are 

often kept at 1:1 or 1:2, and undersampling or SMOTE balance is used. Hashemifar et al. (2018) proposed 

dynamic negative sample refreshing of the training set. If negative samples are mixed with true positivity, 

performance will be underestimated. When data is scarce, it can be compensated by cross-species or transfer 

learning. 

5.2 Model evaluation metrics 

Commonly used metrics for model evaluation include accuracy rate, precision rate, recall rate, F1 and AUC. 

Accuracy fails when the data is unbalanced, so more attention is paid to precision (reducing false positives) and 

recall (discovering true positives). Drug screening focuses on accuracy, while network reconstruction emphasizes 

recall (Zhang et al., 2019). F1 combines the two, and AUC measures the overall discriminatory ability. The PR 

curve is more reliable when positive samples are scarce. Cross-validation (such as 50% fold, 10% fold) can 

prevent overfitting, while protein partitioning validation is closer to the actual prediction of new interaction 

scenarios. 

5.3 Model interpretability and performance optimization methods 

Although deep learning is strong, its interpretability still attracts attention. The prediction basis can be explained 

by feature importance, attention weight, SHAP or LIME. Grad-CAM can also mark key residues (Figure 1) 

(Jumper et al., 2021). In terms of performance optimization, ensemble learning can enhance robustness, 

hyperparameter tuning (mesh, random, Bayesian search) and regularization (L2, dropout) to prevent overfitting 

(Jha et al., 2022). Transfer learning can alleviate the problem of scarce pathogenic bacteria data. Active learning 

verifies the stepwise improvement model of high uncertainty prediction through experiments. The ultimate goal is 

not merely to enhance the indicators, but to reveal the interaction patterns between pathogenic bacteria through 

interpretable and high-performance models, promoting the integration of computation and experimentation. 

6 Application and Achievements in Predicting Protein-Protein Interactions of Pathogenic 

Bacteria 

6.1 Application in the research of antibiotic resistance mechanisms 

Antibiotic resistance has become a global health crisis, and the PPI network provides an overall perspective for 

understanding its molecular mechanism (Maj and Trylska, 2025). In Mycobacterium tuberculosis, predictive 

networks reveal DNA repair and stress protein formation drug-resistant modules; In Staphylococcus aureus, 

β-lactam resistance protein interacts with cell wall enzymes to form a compensation circuit. This type of network 

analysis makes drug resistance factors no longer isolated phenomena. Interaction prediction can also identify new 

drug targets. For example, the interaction between Streptococcus pneumoniae MurA and topoisomerase IV is 

considered an interventionable bottleneck node. Furthermore, some drug-resistant mutations achieve resistance 

precisely by altering the protein-protein interaction interface. Comparing the interaction profiles of mutant and 

wild-type models can reveal this mechanism. These studies are driving anti-drug resistance strategies to shift from 

"inhibiting single targets" to "disrupting interaction networks", and have already shown effectiveness in 

Acinetobacter baumannii models. 

6.2 Role in vaccine target screening and drug discovery 

PPI prediction also plays a role in vaccine and drug development. Interaction networks help identify functionally 

critical and structurally exposed antigens, improving the broad-spectrum efficacy of vaccines (Lian et al., 2019). 

For instance, Streptococcus pneumoniae PsaA interacts closely with PspC, and the combined immune effect is 
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superior to that of single antigens. In terms of drugs, interaction prediction can lock onto interfacial targets. For 

example, blocking the binding of Escherichia coli Tir to host actin can prevent infection. Meanwhile, network 

analysis is also used in drug combination design to guide combination medication by identifying the synergistic 

interaction module. Screening projects for broad-spectrum vaccines and multi-drug combinations have entered the 

validation stage, demonstrating the potential of machine learning prediction to move from theory to application. 

 

Figure 1 AlphaFold produces highly accurate structures (Adopted from Jumper et al., 2021) 

6.3 Cross-species interaction prediction and integration with systems biology 

Cross-species interaction prediction enables us to systematically understand the infection process. The model has 

been able to predict the binding of bacterial effector proteins to host targets, explaining how pathogens evade 

immunity or manipulate host signals. Furthermore, machine learning has also been used to infer the interaction 

relationship between pathogens and symbiotic bacteria. For example, the inhibition of pathogen interaction 

modules by short-chain fatty acids suggests probiotic potential. After integrating multi-omics information, 

interaction prediction becomes more biologically significant and can reveal the dynamic changes of interaction 

networks under infection. Currently, graph neural networks and attention mechanisms are used to integrate 

multi-source data, bringing us closer to the overall map of the infection system. In the future, regulating the 

microbiota or multi-target intervention may become a new strategy to weaken the pathogenicity of pathogens. 

7 Case Study 

7.1 Dataset construction and model design 

Salmonella is a typical intestinal pathogen. Studying its protein interaction network helps understand the complex 

regulation of virulence. Here, Salmonella Typhimurium is taken as an example, using deep learning to predict its 

whole-genome interaction network. The data were obtained from the SalmoNet database and literature-based 

experimental records, with approximately 1,000 verified interactions as positive samples. For negative samples, a 

combination of localization differences and random pairing was adopted to select an equal number of 

non-interacting protein pairs from about 4,000 proteins. In terms of model design, we combined convolutional and 
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graph-based approaches. A Siamese-structured CNN was used to process sequences and extract local and 

long-range features, followed by GraphSAGE to integrate known interaction network information. The 

concatenated outputs of both modules were passed through a fully connected layer to predict interaction 

probability (Zhong et al., 2022). 

Training adopted a 1:1 ratio of positive and negative samples, with 5-fold cross-validation for parameter 

optimization. Dropout and L2 regularization were added to prevent overfitting, and the loss function was weighted 

to enhance sensitivity to false negatives. The model achieved an AUC of 0.92, outperforming CNN-only (0.85) 

and SVM (≈0.75) models, with an F1-score of 0.84. Visualization with Grad-CAM revealed high attention 

weights around known binding motifs such as the arginine-rich region of Ef-Tu, aligning with experimental 

observations (Zhao et al., 2023). Further domain-focused attention confirmed that high-confidence interactions 

often occur within conserved structural regions (Charih et al., 2025). Overall, this CNN+GNN hybrid framework 

effectively captures Salmonella’s protein interaction characteristics and demonstrates strong generalization 

capacity. 

7.2 Model prediction results and experimental verification 

The predicted network contained approximately 8,000 high-confidence interactions. Combined with known data, 

the full network comprised about 1,200 nodes and 8,500 edges, displaying a typical scale-free topology (Figure 2) 

(Muzio et al., 2020). Core hubs included ribosomal subunits and RNA polymerase components, consistent with 

essential metabolic functions. 

Module analysis revealed three main clusters: a flagellar assembly module, a Type III secretion system (T3SS) 

module, and a core metabolic module, interconnected by a few regulatory proteins (Yang et al., 2020). For 

instance, HilA may bridge the T3SS and metabolic pathways, suggesting a coordination between virulence and 

metabolism. About 60% of predicted interactions were novel. 

From a network perspective, the coupling between the flagellar and T3SS modules reveals that Salmonella’s 

motility and invasion are co-regulated. Meanwhile, plasmid-encoded proteins form largely independent 

submodules, supporting the notion that virulence factors often operate autonomously. Altogether, the CNN+GNN 

model not only recovered known interactions but also uncovered biologically meaningful new links that were 

experimentally verified, offering novel insights into pathogenic system organization. 

7.3 Implications of the results for the study of the pathogenic mechanism of salmonella 

These findings shed light on Salmonella’s pathogenic mechanism. Virulence is not an isolated function but part of 

a dynamic interaction network where motility, secretion, and metabolism are intertwined. The observed coupling 

between flagellar and T3SS modules indicates that Salmonella balances energy expenditure and infection 

efficiency through coordinated protein interactions. 

The model also helped assign potential functions to previously uncharacterized proteins — for instance, protein X 

may regulate drug resistance by modulating TopoI activity (Charih et al., 2025). Such predictions accelerate 

functional annotation of hypothetical bacterial genes. Moreover, the identified interactions themselves could serve 

as therapeutic targets: disrupting SpiC-FlhB or TopoI-X interactions could attenuate virulence or enhance 

antibiotic susceptibility. 

Methodologically, the CNN+GNN framework is generalizable and can be extended to other pathogens, providing 

computational completion for species lacking experimental interactome data. With further experimental validation, 

such integrative models are poised to become vital tools in pathogenic systems biology, bridging computational 

prediction and empirical verification for a holistic understanding of bacterial infection mechanisms (Pancino et al., 

2024). 

8 Challenges and Future Prospects 

The prediction of PPI for pathogenic bacteria is still limited by data. The biggest problem is sample imbalance: 

there are few real interactions and many non-interactions, and the model is prone to bias towards the negative 
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class. Even if localization or functional differences are taken into account when constructing negative samples, it 

is still difficult to avoid treating unknown true positives as negative cases, which may cause noise. Weak 

supervision, generative models or sample weighting are possible remedies. Another issue is incompleteness. Most 

pathogenic bacteria interaction data are limited, and the model is prone to overfitting. Cross-species transfer 

learning can utilize model bacteria data, but species differences can still introduce errors. Experimental 

verification is also lagging behind, and high-throughput verification techniques still struggle to keep up with the 

prediction speed. Furthermore, the inconsistent data sources also lead to inconsistent reliability, and a 

standardized and confidence scoring system is needed. These problems are difficult to solve in the short term, but 

they have promoted algorithmic innovation and experimental collaboration. 

 
Figure 2 Protein-protein interactions characterization learning (Adopted from Muzio et al., 2020) 

Cross-species generalization and interpretability are new challenges. The migration of models among different 

bacteria often fails because most of the captured patterns are species-specific. Joint training or introduction of 

species factors can improve generalization, while large pre-trained models (such as ProtBert) can learn more 

general features. On the other hand, the "black box" attribute of deep models makes the results hard to understand. 

Visualizing attention weights or introducing concept vectors can help link predictions with biometric features. 

Explainable structures such as graph rule networks are also under exploration. Furthermore, future models also 

need to deal with larger-scale "host-pathogen-microbiota" maps, and algorithm efficiency will become a 

bottleneck. To enhance generalization and transparency, both computational and experimental improvements are 

still required. 

There are mainly two future directions: multi-omics integration and intelligent AI. The integration of 

transcriptome, metabolome and single-cell data can reveal the spatiotemporal dynamics of interactions, and 

dynamic graph models are being attempted. The combination of cross-species and host omics will bring 

predictions closer to the real ecology. In terms of algorithms, new ais such as GAN, diffusion models and 
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reinforcement learning can generate samples or optimize experimental designs, while structural models such as 

AlphaFold2 show the potential of "general interaction prediction". Ultimately, computation and experimentation 

will form a closed-loop system: AI prediction, experimental verification, and model update. The combination of 

multi-dimensional data and intelligent algorithms will drive PPI prediction into a new stage, providing more 

systematic support for the analysis of infection mechanisms and antibacterial strategies. 
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