2 Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, PR China
1 Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Tokyo 188-0002, Japan
2 Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, PR China
1 Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Tokyo 188-0002, Japan
2 Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, PR China
Author Correspondence author
Genomics and Applied Biology, 2013, Vol. 4, No. 1 doi: 10.5376/gab.2013.04.0001
Received: 18 Dec., 2012 Accepted: 24 Dec., 2012 Published: 30 Jan., 2013
Liu et al., 2013, Functional analysis of a type
AtPP2C52 is a plasma membrane type-2C protein phosphatase. In this study, AtPP2C52 promoter-GUS analysis revealed that AtPP2C52 gene was found in a broad expression spectrum with a higher level in the vascular and meristem. AtPP2C52 can interact with multiple proteins, including a proteasome maturation factor, UMP1, and a cysteine proteinase, RD21a, as well as the heterotrimeric G proteins β subunit, AGB1. By mutational analysis of AtPP2C52, it was identified that some residues were essential for AtPP2C52 to bind AGB1, UMP1 and RD21a, suggesting that these proteins should be potential substrates of AtPP2C52.
. PDF(318KB)
. FPDF(win)
. HTML
. Online fPDF
Associated material
. Readers' comments
Other articles by authors
. Hua Liu
. Daisuke Tsugama
. Shenkui Liu
. Tetsuo Takano
Related articles
. Protein phosphatase
. Vascular
. Protein-protein interaction
. Arabidopsis thaliana
Tools
. Email to a friend
. Post a comment