Microscopy technique reveals hidden nanostructures in cells and tissues
Published:11 Sep.2022 Source:Massachusetts Institute of Technology
Inside a living cell, proteins and other molecules are often tightly packed together. These dense clusters can be difficult to image because the fluorescent labels used to make them visible can't wedge themselves in between the molecules.
MIT researchers have now developed a novel way to overcome this limitation and make those "invisible" molecules visible. Their technique allows them to "de-crowd" the molecules by expanding a cell or tissue sample before labeling the molecules, which makes the molecules more accessible to fluorescent tags.
This method, which builds on a widely used technique known as expansion microscopy previously developed at MIT, should allow scientists to visualize molecules and cellular structures that have never been seen before.
"It's becoming clear that the expansion process will reveal many new biological discoveries. If biologists and clinicians have been studying a protein in the brain or another biological specimen, and they're labeling it the regular way, they might be missing entire categories of phenomena," says Edward Boyden, the Y. Eva Tan Professor in Neurotechnology, a professor of biological engineering and brain and cognitive sciences at MIT, a Howard Hughes Medical Institute investigator, and a member of MIT's McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research.
Using this technique, Boyden and his colleagues showed that they could image a nanostructure found in the synapses of neurons. They also imaged the structure of Alzheimer's-linked amyloid beta plaques in greater detail than has been possible before.