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Abstract UreG is one of the accessory proteins of urease in plants. In this study, a gene encoding an UreG consisting of 363 amino 
acids from Arabidopsis thaliana was isolated. The AtUreG gene was expressed in Escherichia coli BL21 as a GST fusion protein. 
The GST-AtUreG fusion protein was induced and purified under the optimized culturing conditions of 0.2 mM IPTG and 25℃ for 5 
h. Western blot analysis using an anti-GST antibody showed that the GST-AtUreG fusion protein was not degraded. 
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1 Introduction 
Urease is a Ni-containing urea hydrolase that catalyze the conversion of urea to ammonia and carbamate, which is 
found in many microbes and plants (Farrugia et al., 2013). Some plants, such as soybean (Glycine max) 
(Wiebke-Strohm et al., 2016) have two urease genes, while others, including potato (Solanum tuberosum) (Witte 
et al., 2005), tomato (Lycopersicon esculentum) (Bacanamwo et al., 2003) and Arabidopsis (A. thaliana) (Bu et al., 
2015) have only one. Activation of urease is best studied in klebsiella aerogenes. It requires the carbamoylation of 
a Lys residue and the incorporation of two nickel ions per active site (Farrugia et al., 2013). For in vivo urease 
activation, three urease accessory proteins, UreD, UreF and UreG, are absolutely necessary. Apo-urease and UreD, 
UreF and UreG form a complex that is competent to incorporate CO2 and nickel upon GTP hydrolysis carried out 
by UreG (Soriano et al., 1999). 

In the previous study, comparing accessory proteins sequences from Arabidopsis and k. aerogenes shows that 
UreG is conserved best (42.8% identity) while UreD and UreF are only 21.8% and 19.4% identity, respectively 
(Witte et al., 2005). In addition, UreG mutation tests showed that any of the lysine and threonine key sites 
combination with nucleotide mutated would lead urease activity completely lost (Soriano et al., 1999; Soriano et 
al., 2000). Such as, in soybean, the urease activities and embryo-specific were lost in UreG Eu3 mutant 
(Freyermuth et al., 2000). In Arabidopsis, the study of Arabidopsis UreG knockout mutants showed that lacking 
UreG gene were unable to grow on the medium containing urea as the sole nitrogen source (Witte et al., 2005). 
Although UreG plays an essential role involved in urease activity, the function of the UreG protein has not been 
yet investigated. 

In this study, we isolated an Arabidopsis cDNA that encodes AtUreG consisting of 363 amino acids, and cloned 
into the protein expression vector pGEX-6p-3 to form pGEX-6p-3-AtUreG plasmid. The AtUreG gene was 
expressed in Escherichia coli BL21 as a GST fusion protein under different concentration of IPTG, induction 
temperature and induction times, and purified the GST-AtUreG fusion protein with the optimized conditions, 
finally, a western blot to verify the stability of the recombinant protein. 
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2 Materials and Methods 
2.1 Cloning of AtUreG cDNA fragment 
The full-length cDNA sequence of AtUreG (1090-bp, At2g34470.2) was amplified by polymerase chain reaction 
(PCR) using AtUreG specific primers: the forward primer 5’-CTCTCGGAAATGGCATCACAC-3’ and the 
reverse primer 5’-CATCATCACTGGCGCTTCTT-3’ from the Arabidopsis cDNA. 

2.2 Construction of the expression vector pGEX-6P-3-AtUreG 
The 1090-bp coding region of AtUreG was amplified by polymerase chain reaction (PCR) using the forward 
primer 5’-GGATCCCTCTCGGAAATGGCATCACAC-3’ (BamHI site underlined) and the reverse primer 
5’-GTCGACCATCATCACTGGCGCTTCTT-3’ (SalI site underlined). The PCR product was connected to the 
pGEX-6P-3 plasmid at the BamHI and SalI sites. Then, the pGEX-6P-3-AtUreG plasmid was transformed into 
E.coli BL21 cells, the colonies were selected on LB medium containing 100µg/ml ampicillin and further 
identified by PCR reaction. The expression vector pGEX-6P-3-AtUreG was used to produce GST-AtUreG cells.  

2.3 Expression and purification of GST-AtUreG fusion protein 
The GST-AtUreG transformed cells were incubated in the LB medium and expression of the GST-AtUreG fusion 
protein was induced by isopropyl β-D-thiogalactoside (IPTG). To determine the GST-AtUreG protein expression 
under different IPTG (0.1, 0.2, 0.5, 0.8 and 1mM/L), time (1, 2, 3, 4 and 5h) and temperature (25, 30 and 37°C) 
conditions, aliquots of the culture were removed at different time and different temperature, lysed in the SDS 
sample buffer (100 mmol/L Tris-HCl pH 6.8, 200 mmol/L DTT, 4% SDS, 2% bromophenol blue, 20% glycerol ) 
for 5min at 100°C and analyzed by SDS-PAGE. 

For great amount of GST-AtUreG fusion protein purification, the GST-AtUreG transformed cells were cultured in 
LB medium which containing 100 μg/ml ampicillin at 25°C and shaking at 120rpm. When the OD600 reached a 
value of about 0.6 after 5 hours culture, expression of the GST-AtUreG fusion protein was induced by adding 
0.2mM IPTG for an additional 5h at 25°C. Then, the cells were centrifuged and resuspended in pre-cooled lysis 
buffer (100mmol/L NaCl, 100mmol/L Tris-HCl pH 8.0, 50mmol/L EDTA, 2% TritonX-100), after that, added the 
lysozyme to the suspension to a final concentration of 1mg/ml. The suspension was incubated on ice for 30min 
and mix several times, centrifuged at 15,000rpm for 30min at 4°C. After centrifugation, the supernatant containing 
the GST-AtUreG fusion protein was loaded on a GST resin (GE Healthcare). Non-specifically bound proteins 
were removed by washing buffer (0.14mol/L NaCl, 2.7mmol/L KCl, 10mmol/L Na2HPO4, 1.8mmol/L KH2PO4, 
0.5% TritonX-100). The bound fusion protein with GST-tag was eluted using elution buffer (20mmol/L 
glutathione, 100mmol/L Tris-HCl pH 8.0). At last, the purified protein samples were analyzed by SDS-PAGE. The 
concentration of protein was measured by using a coomassie brilliant blue G-250 reagent, the bovine serum 
albumin (BSA) was used as a standard reference. 

2.4 Western blot analysis of GST-AtUreG 
The induced and purified proteins were separated by SDS-PAGE using a 10% gel. After electrophoresis, one gel 
was stained six hours by using coomassie brilliant blue R250, then removed the motley and scanned the pictures, 
the other gel was transferred to a Hybond-N+ membrane (Amersham Biosciences) by using a HoeferTM TE 70 
semi-dry transfer unit (Amersham Biosciences) with Tris-glycine electroblotting buffer (25mmol/L Tris-HCl pH 
7.0, 10% SDS, 190mmol/L Glycine, 20% Methanol) for 1h at 100mA. After transferring, the membrane was 
washed by washing buffer (0.14mol/L NaCl, 2.7mmol/L KCl, 10mmol/L Na2HPO4, 1.8mmol/L KH2PO4) for 
15min, blocked in 1% blocking reagent for 1h, probed with mouse anti-GST antibody (1: 3000 dilution) for 1h at 
room temperature, washed three times for 15min in phosphate buffer, and probed with goat anti-mouse IgG 
antibody labeled with alkaline phosphatase (1: 2000 dilution) for 1h at room temperature. The signals were 
detected by adding CDP-Star (Roche, USA) using a Luminescent Image Analyzer LAS-4000 (Fujifilm, Japan).  
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3 Results and Discussion 
3.1 Expression of GST-AtUreG fusion protein in E.coli 
In order to determine the expression of GST-AtUreG, the E.coli BL21 cells transformed with the 
pGEX-6P-3-AtUreG plasmid were firstly induced at different IPTG concentration conditions in 37°C for 1 hours. 
After induction by different concentration of IPTG (0.1, 0.2, 0.5, 0.8 and 1mM), production of GST-AtUreG (~56 
kDa) fusion protein was existed (Figure 1, lane 4-8), while before induction, the protein was absent (Figure 1, lane 
3). However, the production of GST-AtUreG was improved no significant effect on the IPTG concentration from 
0.1-1.0mM (Figure 1). As a control, the GST protein was existed after 1 hours induced at 1mM IPTG (Figure 1, 
lane 2), while the protein was absent before induction (Figure 1, lane 1). Previous studies have been shown that 
the high concentration of IPTG may inhibit the expression of fusion proteins, and partially expressed in form of 
inclusion body (Massiah et al., 2015). Therefore, these results showed that 0.1-1.0mM IPTG concentration did not 
significantly affect the soluble GST-AtUreG protein expression level (Figure 1), we chose 0.2mM IPTG for 
further studies.  

 

Figure 1 IPTG course of GST-AtUreG fusion protein expression 
Note: Lysates were obtained from E. coli BL21 cells after expression induced at 37°C in 1h. Lane M, protein molecular weight 
marker; lanes 1-2, cells transformed with pGEX-6P-3 plasmid non-induced and induced; lanes 3-8, cells transformed with 
pGEX-6P-3-AtUreG plasmid non-induced and induced under 0.1, 0.2, 0.5, 0.8 and 1mM IPTG, respectively. Arrow indicates 
GST-AtUreG fusion protein 

The induced temperature also had a certain effect on the expression of fusion protein (Sun et al., 2002). The 
effects of the culture temperatures (25, 30 and 37°C) at different induction time (1, 2, 3, 4, 5h) with 0.2mM IPTG 
were examined. The result shows that GST-AtUreG fusion protein was produced within a wide temperatures range 
(25, 30 and 37°C) (Figure 2). Along with the induced temperature elevated, the expression level of GST-AtUreG 
fusion protein significantly increased (Figure 2-A, B, C). Furthermore, with increasing the culture time at 25, 30 
and 37°C, respectively, the expression level of GST-AtUreG fusion protein was increased at the beginning of 1h 
induction, however, the highest expression level of GST-AtUreG was produced after 5h induction (Figure 2-A, B, 
C). The higher temperatures was inappropriate for soluble protein production (Massiah et al., 2015), showing that 
the optimum temperature for the soluble protein was at 25°C.   
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Figure 2 GST-AtUreG fusion protein expression under 25°C (A), 30°C (B) and 37°C (C) at 1, 2, 3, 4 and 5h, respectively 

Note: Lysates were obtained from E.coli BL21 cells after expression induced. Lane M, protein molecular weight marker; lanes 1, 

cells transformed with pGEX-6P-3 plasmid induced; lanes 2-7, cells transformed with pGEX-6P-3-AtUreG plasmid non-induced and 

induced. Arrow indicates GST-AtUreG fusion protein 

3.2 Purification of GST-AtUreG fusion protein in E.coli 
In the prokaryotic expression system, the application of GST expression and purification system is more 
widespread, some fusion protein is soluble, some of which exist in the form of insoluble inclusion bodies. The 
soluble fusion protein can be purified and identified directly by the properties of GST. The key of Affinity 
chromatography is to select the ligand that can recognize and bind specifically to the target protein. The selected 
ligand should have a strong affinity to the target protein (Peng et al., 2002). To purify a large amount of 
GST-AtUreG fusion protein, 500ml cells transformed with the pGEX-6P-3-AtUreG plasmid culture was 
centrifuged, then, the obtained cell pellet was lysed with lysozyme for 30min and centrifuged. Aliquots of the 
supernatant were applied to a glutathione-sepharose affinity resin column which had been pre-washed with 
ice-cold washing buffer, after all supernatant passed through the column and washed non-specific proteins, the 
GST-AtUreG was eluted with 20mM glutathione concentrations at 300µL, 200µL, and 100µL, respectively 
(Figure 3, lane 5-7). Additionally, induced and purified GST as a control (Figure 3, lane 2), which proved 
experimental process was accurate. 

 

Figure 3 Effect of glutathione concentration on elution of GST-AtUreG fusion protein 

Note: Cell lysates and column elutes were analyzed by SDS-PAGE and Coomassie staining. Lane M, protein molecular weight 

marker; lane 1-3, non-induced, induced and purified GST protein; lane 4-8, non-induced, induced and 20mM glutathione purified 

GST-AtUreG fusion protein. Arrow indicates the GST-AtUreG fusion protein 

It has been reported that the optimal glutathione concentration to purify GST-AtUreG fusion protein was 20mM 
(Bo S., 2014). Two gels were prepared, one was used to dye, and the other gel was used to Western blot analysis to 
identify the purified protein. The result show that the fusion protein induced in the bacterial lysate and the purified 
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fusion protein produced single signals (Figure 4, lane 6-7), showing that the GST-AtUreG fusion protein was 
translated and purified correctly, and that the purified protein was not degraded.  

 

Figure 4 Western blot analysis of GST-AtUreG fusion protein 
Note: Protein samples were separated on two gels. One was stained with CBB (A) and the other was transferred to a nylon membrane 
and probed with anti-GST antibody (B). In (A), Lane M, protein molecular weight marker; lane 1, non-induced GST-AtUreG fusion 
protein; lane 2, IPTG induced GST-AtUreG fusion protein; lane 3, purified GST-AtUreG fusion protein under 20 mM glutathione. In 
(B), lanes 6-7, the blot of GST-AtUreG fusion protein 

4 Conclusions 
In conclusion, we successfully expressed and purified the GST-AtUreG fusion protein in E.coli. The expression 
conditions for GST-AtUreG were optimized as 0.2mM IPTG induction at 25℃ for 5h. After the optimized 
method, a western blot confirmed that the GST-AtUreG fusion protein was translated and purified correctly. The 
obtained GST-AtUreG fusion protein provided a foundation for further studying the biological function of AtUreG 
protein and preparation of AtUreG antibody.  
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