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Abstract This study provides a comprehensive insight about complex response mechanisms that plants cope with water deficit
conditions in the field, involving physiological, biochemical, molecular, and ecological adaptations changes that finally plants can
survive and persistence under drought stress. Key adaptive changes are plants activate a range of natural defense systems to mitigate
the adverse effects of drought. These changes in cellular osmotic potential, water potential, and the activation of antioxidant enzymes
and osmolytes such as proline, glycine betaine, and soluble sugars. Phytohormones like abscisic acid, jasmonates, and salicylic acid
play crucial roles in modulating plant responses to water stress through complex signaling networks. Additionally, plants exhibit
morphological changes such as increased root growth and alterations in leaf anatomy to enhance water uptake and reduce water loss.
Molecular insight of plants response to drought stress is stress-responsive genes that contribute to cellular protection and metabolic
adjustments. In this paper, the multifaceted nature of plant responses to water deficit are described, and the importance of integrated
physiological, biochemical, and molecular mechanisms are listed, respectively. Understanding these complex interactions is essential
for developing strategies to improve crop resilience and productivity in water-limited environments.
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1 Introduction

Water deficit, commonly referred to as drought stress, is a condition where water availability is significantly
below the optimal level required for plant growth and development. Water deficit condition is one of the most
important factors restricting agricultural productions, which seriously affects crop yield (Khan et al., 2013).
Moreover, as one of the main restraining factors in the process of plant growth, water deficit can hinder plant
respiration, stomatal movement and photosynthesis (Yang et al., 2021), thus reduced plant growth, altered
phenology, and impaired photosynthesis and respiration (Farooq et al., 2009; Kaur et al., 2021). The severity and
duration of water deficit can vary, influencing the extent of its impact on plant systems (Bray, 1997). Summarize
the mechanisms by which plants respond to water deficit is crucial for developing strategies to mitigate its adverse
effects (Mullet and Whitsitt, 1996).

Water deficit has profound implications for agriculture and ecosystems. In agriculture, drought stress is a leading
factors for crop yield reduction worldwide, and aggravates like heat, salinity and pathogen attack which cause
damage of plants (Ahluwalia et al., 2021; Kaur et al., 2021). The impact of water deficit is expected to intensify
with climate change, affecting more agricultural lands and leading to prolonged periods of drought (Kaur et al.,
2021). This stress not only limits crop productivity but also affects the quality of produce, posing a significant
challenge to food security (Yang et al., 2021). In natural ecosystems, water deficit can alter plant community
structures, reduce biodiversity, and disrupt plant-pollinator interactions, threaten ecosystem sustainability, thereby
affecting ecosystem services (Kuppler and Kotowska, 2021). The anatomical and physiological changes induced
by drought stress in plants, such as reduced leaf size and altered root morphology, further highlight the need for
comprehensive studies on plant responses to water deficit (Shao et al., 2008; 2009). Studying the response

mechanisms of plants to water deficit is essential for several reasons. Firstly, it provides insights into the
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physiological, biochemical, and molecular adaptations that enable plants to survive and thrive under drought
conditions (Mullet and Whitsitt, 1996; Farooq et al., 2009; Yang et al., 2021). These adaptations include stomatal
closure, morphological and structural changes, synthesis of hormones, osmotic regulatory substances and
expression of drought-resistant genes to alleviate drought stress (Bray, 1997; Kaur et al., 2021). Secondly,
understanding these mechanisms can inform the development of drought-resistant crop varieties through breeding
and genetic engineering, thereby enhancing agricultural resilience to climate change (Chaves, 2004). Additionally,
knowledge of plant responses to water deficit can guide the implementation of sustainable agricultural practices
and water management strategies, ensuring efficient use of water resources (Shao et al., 2009). Ultimately, such
studies contribute to the broader goal of maintaining ecosystem stability and productivity in the face of increasing
water scarcity.

By integrating physiological, biochemical, molecular, and ecological perspectives, this review aims to provide a
comprehensive understanding of plant responses to water deficit, highlight the importance of interdisciplinary
approaches in addressing this critical environmental challenge.

2 Physiological Adaptation Mechanisms

2.1 Stomatal regulation and transpiration

Stomatal regulation, such as increase stomatal length, stomatal width, stomatal density, and stomatal opening is a
critical physiological adaptation mechanism that plants employ to manage water loss and maintain water use
efficiency (WUE) under water deficit conditions. Stomata are microscopic pores on the leaf surface that control
gas exchange, including the uptake of CO- for photosynthesis and the release of water vapor through transpiration.
Under drought conditions, plants often close their stomata to reduce water loss, which can also limit CO; uptake
and affect photosynthesis (Buckley, 2019; Kaur et al., 2021; Lobato et al., 2021).

The plant hormone of abscisic acid (ABA) is a crucial signal molecule in stomatal closure. ABA is synthesized in
response to water deficit and signals the guard cells to close the stomata, thereby reducing transpiration rates
(Giorio et al., 2018; Kaur et al., 2021; Yari Kamrani et al., 2022). This response is part of a complex signaling
network that includes secondary messengers and mitogen-activated protein kinases, which help in the rapid
adjustment of stomatal aperture (Kaur et al., 2021; Lawson and Vialet-Chabrand, 2019). Additionally, circadian
clocks regulate the diurnal opening and closing of stomata, optimizing WUE day-night (Yari Kamrani et al.,
2022).

2.2 Water transport and root structure adjustment

Water transport within the plant and adjustments in root structure are essential for maintaining water uptake
during periods of water deficit. The morphological changes of plant roots to enhance water absorption from
deeper soil layers. Root system configurations involve root length and root density, root hair, root branches can
significantly affect the water deficiency of plants (Gupta et al., 2020; Wu et al., 2022).

Hydraulic conductance within the plant, particularly in the roots and leaves, is also adjusted to optimize water
transport. This involves changes in the expression of aquaporins, which are water channel proteins that facilitate
water movement across cell membranes (Kaur et al., 2021). The root, stems, leaves system have ability to produce
aerenchyma, a tissue with air spaces, helps in maintaining oxygen supply from the stem to the root in plants under
waterlogged conditions, which can also be beneficial during drought stress by improving root function and water
uptake (Sou et al., 2021; Wu et al., 2022).

2.3 Leaf morphology changes and water conservation strategies

Leaf morphology changes are another crucial adaptation mechanism that helps plants conserve water. Under water
deficit conditions, plants may exhibit leaf wilting, crimping, and reduce leaf number and area to minimize water
loss through transpiration (Lobato et al., 2021; Wu et al., 2022). These morphological changes are often
accompanied by alterations in leaf anatomy, such as a reduction in leaf angle and size, stomatal position,
deposition of the cuticle and epidermal thickness, which further contribute to water conservation on the leaf
surface (Yavas et al; 2023).
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Paraheliotropism, the movement of leaves to minimize direct sunlight exposure, is another strategy employed by
some plants to reduce water loss. This mechanism can decrease leaf temperature and reduce transpiration rates,
thereby conserving water (Lobato et al., 2020). Additionally, the accumulation of osmolytes, such as proline, helps
in maintaining cell turgor and protecting cellular structures during dehydration (Giorio et al., 2018).

In summary, plants employ a range of physiological adaptation mechanisms, including stomatal regulation, root
structure adjustments, and leaf morphology changes to cope with water deficit conditions (Wahab et al., 2022)
(Figure 1). These strategies are crucial for maintaining water balance, optimizing WUE, and ensuring plant
survival under drought stress.

3 Biochemical Regulation Mechanisms

3.1 Accumulation of osmoprotectants (e.g., proline, sugars)

Plants under water deficit conditions often accumulate osmoprotectants such as amino acid compounds (proline),
amine compounds (glycine betaine and polyamines), soluble sugars, and trehalose, mannitol, and other
compounds, play a major role in maintain cellular osmotic balance and protect cellular structures. For instance, in
Moringa oleifera, proline content increased significantly with the severity of moisture stress, particularly in the
leaves under severe stress conditions (Chitiyo et al., 2021). Similarly, in Scrophularia striata, soluble sugars like
glucose, mannose, rhamnose, and xylose were found to accumulate under osmotic stress, serving as compatible
solutes and aiding in the production of phenolic compounds (Falahi et al., 2018). Additionally, Quercus robur and
O cerris seedlings showed species-specific accumulation of osmoprotectants, with Q. robur primarily
accumulating glycine betaine and Q. cerris accumulating dimethylsulphoniopropionate (DMSP) under water
deficit conditions (Kebert et al., 2022).

3.2 Activation of antioxidant systems and free radical scavenging

Water deficit conditions lead to the overproduction of reactive oxygen species (ROS), causing oxidative stress in
plants. To mitigate this, plants activate antioxidant systems, including both enzymatic and non-enzymatic
antioxidants. For example, in Isatis indigotica, activities of antioxidant enzymes such as superoxide dismutase
(SOD), peroxidase (POD), and catalase (CAT) increased significantly under moderate and severe water deficits
(Zhou et al., 2023). Similarly, the tea plants (Camellia sinensis), tolerant genotypes exhibited higher activities and
expression levels of antioxidative enzymes, including superoxide dismutase (SOD), ascorbate peroxidase (APX),
peroxidase (POX) and catalase (CAT), which helped in reducing oxidative damage compared to susceptible
cultivars (Nalina et al., 2021). Furthermore, in Moringa oleifera, antioxidant activity increased with drought
progression, indicating a robust defense mechanism against oxidative stress (Chitiyo et al., 2021).

Drought Stress  ———————— Morphological
J tolerance in Crops alterations
C Plant height; Reduced leaf extension; Lessened leaf

size; Number of leaves; Decreased leaf area
Reduced leaf longevity; Prompt maturity;
Augmented root-to-shoot ratio; Condensed total
shoot length lowered the yield

Physiological
alterations
Stomata closure; Reduction in photosynthesis;
Decrease in leaf water potential; Reduced
transpiration rates; Relative water content; Reduced
chlorophyll content; Developed water use efficiency

Biochemical
lterations
Reduction in rubisco efficiency; Decrease in
photochemical efficiency; Production of reactive
oxygen species (ROS); Increase in oxidation
damage; Hampered antioxidant defense system

Well-watered plant

plant

Figure 1 Drought stress impacts plants” morphological, physiological, and biochemical processes (Adopted from Wahab et al., 2022)
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3.3 Hormonal regulation (e.g., ABA) in water stress

Hormonal regulation plays a crucial role in plant responses to drought stress, with ABA being a key hormone
involved in this process. ABA can regulate various physiological processes by its negative and positive crosstalk
with phytohormones in response to drought conditions. In pennyroyal (Mentha pulegium L.), ABA content is
highest in the plants, inoculated with plant growth-promoting rhizobacteria (PGPR) under severe drought stress
(Asghari et al., 2020). Additionally, ABA, interacts with other hormones like jasmonates (JA), salicylic acid (SA),
and ethylene (ET), modulates developmental processes and signaling networks that contribute to plant defense
against water stress (Wahab et al., 2022). In Quercus species, hormonal changes were observed under water deficit
conditions, with Q. cerris showing a higher antioxidant capacity and hormonal modulation compared to Q. robur
(Kebert et al., 2022; Sobrino-Plataen et al., 2024).

By understanding these biochemical regulation mechanisms, researchers can formulate the strategies to improve
plant resilience and in water deficit stress response, ensure sustainable agricultural productivity under changing
climatic conditions.

4 Molecular Response Mechanisms

4.1 Gene expression and regulatory networks related to water deficit

Plants respond to water deficit through complex gene expression and regulatory networks. Key transcription
factors (TFs) and genes are activated in drought stress response. For instance, overexpression of
9-cis-epoxycarotenoid dioxygenase (NCED) and acetaldehyde dehydrogenase (ALDH) enhances drought
resistance by increasing ABA biosynthesis, which are crucial TFs for stress response. Additionally, genes such as
EgrNCED3, EgrPYRI1, and EgrDREBZ2.5 are upregulated in drought-tolerant clones of Eucalyptus, indicating their
role in ABA-dependent and independent pathways (Martins et al., 2018). The regulatory networks also involve
TFs such as DREBs and AREBs, which mediate stress-responsive gene expression to enhance drought resistance
(Takahashi et al., 2020).

4.2 Activation of signaling pathways (e.g., ABA signaling)

ABA signaling is a central pathway in plant response to water deficit. ABA is synthesized mainly in leaves upon
receiving drought signals from roots and regulates various physiological and molecular responses, including
stomatal closure to reduce water loss (Takahashi et al., 2018; 2020). The ABA signaling pathway involves several
protein kinases such as SnRK2s and MAPKSs, which detect ABA influx in guard cells and mediate stomatal
closure (Takahashi et al., 2018). Furthermore, the SAPK9-OsMADS23-OsAOC pathway in rice modulates ABA
and JA biosynthesis, influence drought tolerance (Lv et al., 2022). The circadian clock system also plays
important role in regulating ABA production and signaling, thereby influences stomatal responses and water-use
efficiency (Yari Kamrani et al., 2022).

4.3 Roles of proteomics and metabolomics in water deficit response

Proteomics and metabolomics provide advanced insights into the biochemical changes in plants under water
deficit. Xiong et al. (2019) identification and analysis differential metabolites and differentially expressed proteins
functions of rice spikes indicate that the drought mainly promoted carbohydrate metabolic process, carbon
fixation in photosynthetic organism pathway, the energy metabolism pathway, and ROS metabolic process
functions. The dynamic regulatory networks in wheat roots, characterized through transcriptomics and proteomics,
highlight the involvement of various biosynthetic pathways and protein-protein interactions in drought tolerance
(Rahimi et al., 2021). These studies underscore the importance of integrating proteomic and metabolomic data to
understand the comprehensive response mechanisms of plants to water deficit.

5 Ecological Adaptation and Evolution

5.1 Changes in plant community structure and species diversity

Water deficit significantly impacts plant community structure and species diversity. Studies have shown that
drought conditions lead to a shift in species composition, favoring drought-tolerant species over those less adapted
to water scarcity. For instance, a meta-analysis revealed that water stress inhibits plant growth and photosynthesis
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but increases ROS and antioxidant activities, which are crucial for plant survival under drought conditions (Sun et
al., 2020). Variations in leaf water content (LWC) among different plant communities indicate that species in arid
environments have evolved higher LWC to cope with water scarcity, thereby altering community structure (Wang
et al., 2021). These adaptations result in more homogeneous community structure dominated by drought-resistant
species, reducing overall species diversity.

5.2 Impact on ecosystem functions and services

Drought-induced changes in plant communities have profound effects on ecosystem functions and services. The
reduction in plant growth and photosynthesis under water stress conditions can lead to decreased primary
productivity, evapotranspiration (ETP), and WUE, affect the structure, composition and function of ecosystem
(Sun et al., 2020). Moreover, alterations in floral traits due to water deficit can impact plant-pollinator interactions,
potentially reducing pollination services and affecting plant reproduction and biodiversity (Kuppler and Kotowska,
2021). The modulation of CO; fertilization effects on plant gas exchange and water use efficiency under drought
conditions further complicates the carbon-water cycle in terrestrial ecosystems, potentially altering ecosystem
services such as carbon sequestration and water regulation (Li et al., 2021). Water deficit reduced plant growth
over a season or permanently, local species reduction or extinction, freshwater ecosystems may change flow
regimes (Sadiqi et al., 2022). These changes underscore the need for a comprehensive understanding that drought
how to impacts ecosystem functions to develop effective conservation and management strategies.

5.3 Niche distribution and succession of drought-adapted plants

Drought conditions drive the niche distribution and succession of drought-adapted plants. Species with inherent
drought tolerance mechanisms, such as increased root biomass allocation and enhanced antioxidant enzyme
activities, are more likely to thrive and dominate in water-scarce environments (Nosalewicz et al., 2018; Luo et al.,
2022). For example, other important morphophysiological strategies such as increased root growth, increased
vascular bundles and density of Lippia grata improved the plant's ability to adapt to and survive in drought-prone
areas under water deficit conditions (Palhares Neto et al., 2020). In addition, the different transcriptomic profiling
of Pinus pinaster revealed that drought-tolerant genotypes exhibit pre-adapted stress-related gene expression,
allowing individuals to better cope with water deficit (De Maria et al., 2020). These adaptive traits facilitate the
establishment and succession of drought-tolerant species, leading to a shift in niche distribution and community
dynamics over time.

6 Applications of Multi-omics in Water Deficit Research

6.1 Advances in genomics and transcriptomics

Genomics and transcriptomics have significantly advanced our understanding of plant responses to water deficit.
For instance, a study on durum wheat utilized next-generation sequencing to provide a comprehensive description
of the small RNAome, mRNA transcriptome, and degradome under water-deficit conditions. This study identified
differentially expressed miRNAs and genes linked to processes such as hormone homeostasis, photosynthesis, and
signaling, revealing key miRNA-mRNA regulatory pairs that play significant roles in stress adaptation (Liu et al.,
2020) (Figure 2). Similarly, research on maize seedlings under water deficit stress highlighted the incongruence
between protein and transcript levels, suggesting complex gene expression mechanisms in response to drought
(Xin et al., 2018). These advance findings underscore the importance of integrating genomic and transcriptomic
data to unravel the intricate regulatory networks involved in drought tolerance.

6.2 Latest discoveries in metabolomics and proteomics

Metabolomics and proteomics profiles were integrated to provide a systematic insight about the biochemical and
physiological changes in plants under water deficit conditions. A study on proteomic analysis maize seedlings
revealed that 104 proteins were differentially accumulated under water stress, with significant roles in
photosynthesis, carbohydrate metabolism, stress defense, energy production, and protein metabolism (Xin et al.,
2018). Another study on eastern cottonwood identified over 108 000 peptide sequences, providing a
comprehensive view of the proteome changes in response to cyclic and prolonged water deficit, and highlighting
the RD26 TF as a key drought marker (Abraham et al., 2018). Metabolomic studies have also shown that plants
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reconfigure their metabolic pathways to cope with water deficit, with specific metabolites substance, ferulic and
cinnamic acids playing crucial roles in drought tolerance (Kravic et al., 2021). A study integrates metabolomic,
transcriptomic, and gene co-expression network analysis confirmed that the key to adaptation to drought by millet
was to enhance lignin metabolism, promote the metabolism of fatty acids to be transformed into cutin and wax,
and improve ascorbic acid circulation (Cui et al., 2023). These present studies emphasize the potential of
metabolomics and proteomics in identifying biochemical markers and understanding the metabolic adjustments in
plants under drought stress.
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Figure 2 Water-deficit and heat stress response network mediated by key miRNA-RNA modules in durum wheat (Adopted from Liu
et al., 2020)

Image caption: (a) Examples of key miRNA-mRNA modules involved in the stress response networks. miRNA or gene names
highlighted in green represent up-regulation under water-deficit plus heat stress; miRNA or gene names highlighted in red represents
up-regulation under water-deficit plus heat stress; (b) multiple-to-multiple regulatory connections between miRNAs (orange) and
their targets (blue) (Adopted from Liu et al., 2020)
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6.3 Data integration and systems biology analysis

The integration multi-omics data and systems biology approaches has opened new avenues for understanding the
complex responses of plants to water deficit. A multi-omics integration (MOI) study on oil palm under drought
stress combined transcriptomics, proteomics, and metabolomics data to reveal several pathways affected by water
deficit, with cysteine and methionine metabolism being the most impacted (Ledo et al.,, 2022). This
comprehensive approach can identify candidate genes for engineering drought-resistant crops. Additionally,
bioinformatics tools and computational models have been developed to manage and analyze multi-omics data, as
demonstrated in a case study on maize nodal root growth under water deficit, which highlighted the power of
integrated datasets in uncovering the landscape of drought responses (Wang et al., 2022). These integrative
analyses are crucial for developing a holistic understanding of plant responses to water deficit and for identifying
potential targets for genetic and agronomic interventions.

In summary, it is necessary to combine genomic, transcriptomic, proteomic, and metabolomic to clarify the water
deficit reponse mechanism. The integration of these datasets through systems biology approaches is essential for
unraveling the complex regulatory networks and metabolic pathways involved in drought tolerance, ultimately
aiding in the development of drought-resistant crop varieties.

7 Applications and Future Research Directions

7.1 Molecular breeding strategies for drought-resistant crops

Molecular breeding strategies have emerged as a pivotal approach to developing drought-resistant crops. These
strategies include marker-assisted selection (MAS), genomic selection (GS), and targeted gene editing, which
have shown promise in enhancing drought tolerance in various crops (Ranjith and Srinivasa Rao, 2021;
Ghadirnezhad Shiade et al., 2023a). The integration of multi-omics technologies has furthered our understanding
of the complex genetic and molecular networks involved in drought response (Seleiman et al., 2021; Raza et al.,
2023). For instance, the identification and manipulation of drought-responsive genes and TFs can breeding the
crops with improved WUE and stress resilience (Kaur et al., 2021; Yang et al., 2021c). Additionally, use of the
speed breeding platforms can accelerate the development of drought-smart cultivars, contributing to global food
security (Raza et al., 2023).

7.2 Sustainable agriculture and water resource management

Sustainable agriculture practices and efficient water resource management are crucial for mitigating the adverse
effects of drought on crop productivity. Agronomic strategies such as conservation tillage, crop rotation, and
optimized plant density can increase soil moisture retention and reduce water loss (Ghadirnezhad Shiade et al.,
2023b). The application of plant growth regulators and beneficial rhizobacteria has also been shown to improve
crop drought tolerance by modulating physiological and biochemical process (Zhang et al., 2022). Moreover, the
use of exogenous treatments like foliar sprays, seed priming, and the application of osmoprotectants can help
plants cope with water deficit conditions (Seleiman et al., 2021). Integrating these practices with advanced
irrigation techniques and precision agriculture can offer important practical guidance for sustainable and resilient
agricultural systems ( Wang et al., 2022).

7.3 Future research hotspots in water deficit response mechanisms

Future research should focus on unraveling the intricate mechanisms underlying plant responses to water deficit at
the dynamic regulatory networks, epigenetic regulation, environmental interactions, and translational research
(Marques and Hu, 2024).. Key areas include the temporal and spatial dynamics of regulatory networks and DNA
methylation, histone modifications, and small RNA-mediated gene silencing, play pivotal roles in modulating
plant responses (Yang et al., 2021a; 2021b; Kaya et al., 2024). Additionally, exploring the potential of advanced
technologies such as CRISPR/Cas9 and bisulfite sequencing for precise genome editing and the drought memory
in the plant (Kou et al., 2022; Raza et al., 2023). Understanding the cross-talk between different signaling
pathways and the integration of multi-omics data and epigenetic markers will provide a comprehensive insight
into plant responses to water deficit conditions, pave the way for innovative solutions to develop drought-tolerant
crops in the face of climate change (Ranjith and Srinivasa Rao, 2021; Seleiman et al., 2021).
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8 Concluding Remarks

As mentioned above, the comprehensive response mechanisms of plants to water deficit encompass a wide array
of physiological, biochemical, molecular, and ecological adaptations. Physiologically, plants alter root architecture,
close stomata, and adjust WUE to mitigate the effects of drought. Biochemically, the plant increases the
production of ROS and activate antioxidant enzymes to combat oxidative stress. Molecularly, plants regulate the
expression of drought-responsive genes and phytohormones such as ABA, which play crucial roles in signaling
pathways that mediate stress responses. Ecologically, water deficit can lead to community rearrangement,
resulting in changes to the dominant species, alterations in important ecosystem functions.

The importance of integrated multidisciplinary approaches in research cannot be overstated. Combining
physiological, biochemical, molecular, and ecological perspectives provides a holistic understanding of plant
responses to water deficit. This integrated approach allows for the identification of key regulatory mechanisms
and the development of strategies to enhance drought tolerance in crops. For instance, understanding the role of
phytohormones in drought response can lead to the engineering of hormone signaling pathways to improve plant
resilience.

Looking forward, future research should focus on the application of advanced genetic and biotechnological tools
to develop drought-resistant plant varieties. Additionally, there is a need for more field-based studies to validate
laboratory findings and understand the plant performance under water deficit and ecosystem services. The
integration the omics technologies, such as genomics, proteomics, and metabolomics, will further elucidate the
complex networks involved in drought response and facilitate the development of comprehensive models to
predict plant behavior under varying environmental conditions.

In conclusion, addressing the challenges posed by water deficit requires a concerted effort from multiple scientific
disciplines. By leveraging the strengths of each field, we can develop innovative solutions to ensure sustainable
agricultural practices and maintain healthy ecosystems to face with increasing water scarcity.
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