Feature Review
Protein-Protein Interaction Networks in Rice under Drought Stress: Insights from Proteomics and Bioinformatics Analysis
2 The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
3 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
4 Department of Plant Breeding, Physiology and Ecology, Yezin Agricultural University (YAU), Nay Pyi Taw, 15013, Myanmar
Author Correspondence author
Computational Molecular Biology, 2024, Vol. 14, No. 5 doi: 10.5376/cmb.2024.14.0022
Received: 27 Jul., 2024 Accepted: 06 Sep., 2024 Published: 20 Sep., 2024
Wang et al., 2024, Protein-protein interaction networks in rice under drought stress: insights from proteomics and bioinformatics analysis, Computational Molecular Biology, 14(5): 191-201 (doi: 10.5376/cmb.2024.14.0022)
This review outlines the physiological and biochemical responses of plants to drought stress, explains the molecular mechanisms, and emphasizes the key role of proteomics in these responses. Drought stress causes dehydration and osmotic changes in plants, leading to cell membrane damage, accumulation of reactive oxygen species (ROS), and metabolic disorders. Plants respond to drought stress through a series of complex physiological and biochemical responses, including regulate of stomatal opening and closing, synthesis protective proteins and metabolites, activate antioxidant systems, and regulate gene expression. Through proteomic and bioinformatic analysis, we systematically synthesis findings that identified key response proteins in rice under drought stress, constructed and analyzed the PPI network, performed functional annotation and pathway enrichment analysis, and demonstrated specific PPI networks involving transcription factors and signaling proteins, interaction networks with osmoprotectants and stress-related proteins, and comparative analysis of PPI networks of different rice varieties under drought stress through case studies. By exploring the response mechanism of rice under drought stress, we propose to develop more effective drought resistance strategies to improve the stability and sustainability of rice production.
. PDF(518KB)
. HTML
Associated material
. Readers' comments
Other articles by authors
. Chunli Wang
. Nant Nyein Zar Ni Naing
. Cui Zhang
. Junjie Li
. Qian Zhu
. Dongsun Lee
. Lijuan Chen
Related articles
. Drought stress
. Proteomics
. Protein-protein interaction networks (PPI Networks)
. Rice
. Bioinformatics analysis
Tools
. Email to a friend
. Post a comment