2. College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
Author Correspondence author
Computational Molecular Biology, 2014, Vol. 4, No. 5 doi: 10.5376/cmb.2014.04.0005
Received: 09 Mar., 2014 Accepted: 26 Apr., 2014 Published: 04 Jul., 2014
Regulatory long non-coding RNAs have been emerged as a major contribution of cognitive evolution in mammalian central nervous system and brain tissues. Though proteins have relatively conserved during evolution, the lncRNAs have evolved rapidly to cope with essential and widespread cellular regulation, partly by directing generic protein function. Long non-coding RNAs, highly yet specifically expressed in mammalian brain, provide tissue- and neuronal activity-specific epigenetic and transcriptional regulation. lncRNAs have been documented to be essential for brain development and be involved in brain related diseases. We suggest that lncRNAs are important to modulate diverse central nervous system processes and are the major factor that is important to the brain development, which may be employed to develop novel diagnostic and therapeutic strategies to treat brain related diseases. Moreover, animal models with altered lncRNA expressions and high-throughput approaches would help to understand the mechanisms of lncRNAs in brain development and the etiology of lncRNA-driven human neurological diseases.
. PDF(1819KB)
. FPDF(win)
. HTML
. Online fPDF
Associated material
. Readers' comments
Other articles by authors
. Jie Lv
. Hui Liu
. Hongbo Liu
. Qiong Wu
. Yan Zhang
Related articles
. Long Non-coding RNAs
. Central nervous system
. Neurogenesis
. Brain development
. RNA-Seq
Tools
. Email to a friend
. Post a comment